Gervasi / Murgante / Garau | Computational Science and Its Applications - ICCSA 2025 | Buch | 978-3-031-96996-6 | sack.de

Buch, Englisch, 414 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 674 g

Reihe: Lecture Notes in Computer Science

Gervasi / Murgante / Garau

Computational Science and Its Applications - ICCSA 2025

25th International Conference, Istanbul, Turkey, June 30-July 3, 2025, Proceedings, Part II
Erscheinungsjahr 2025
ISBN: 978-3-031-96996-6
Verlag: Springer Nature Switzerland

25th International Conference, Istanbul, Turkey, June 30-July 3, 2025, Proceedings, Part II

Buch, Englisch, 414 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 674 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-96996-6
Verlag: Springer Nature Switzerland


The three-volumes LNCS 15648, 15649, 15650 set constitutes the refereed proceedings of the 25th International Conference on Computational Science and Its Applications - ICCSA 2025, held in Istanbul, Turkey, during June 30–July 3, 2025. 

The 71 full papers, 6 short papers, and 1 PHD showcase paper were carefully reviewed and selected from 269 submissions. The papers have been organized in topical sections as follows:

Part I: Computational Methods, Algorithms and Scientific Applications; High Performance Computing and Networks; Geometric Modeling, Graphics and Visualization; Advanced and Emerging Applications; Information Systems and Technologies; Urban and Regional Planning.

Part II: Information Systems and Technologies; 

Part III: Information Systems and Technologies; Urban and Regional Planning; PHD Showcase Paper; Short papers. 

Gervasi / Murgante / Garau Computational Science and Its Applications - ICCSA 2025 jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Information Systems and Technologies.- A Deep Learning-Based Computer Vision System for Automatic Screw Detection in Vehicle Wheel Boxes.- Impact of distances in an anomaly detection context for time series in software testing.- Analysis of Bitcoin Trends through the Integration of On-Chain Financial Indicators and Machine Learning.- An End-To-End Computer Vision System for Structured Information Extraction From Turkish ID Card Images.- Correlating Socioeconomic Factors and Syphilis Incidence: A Case Study in Brazil.- RiceAML: An Auto Machine Learning Model to Identify Abiotic Stress-Associated Single Nucleotide Polymorphisms in Rice.- The Application of Machine Learning Algorithms to Predict Heart Disease.- Designing and Evaluating Heterogeneous Ensembles for Blood Glucose Level Forecasting.- Measuring Team Productivity in Agile Development: A Scrum-Based Process.- Generating local rules in Fuzzy Rule-Based Classi cation Systems.- Leveraging Large Language Models for Natural Language Processing based Tasks in the Legal Domain: A Short Survey.- Analysis of Weightlifting Success Predictability Using Machine Learning.- CausalBioCF: Causal Counterfactuals for Machine Learning Interpretability.- A Comparative Analysis of Interpretable Deep Learning Models for Nutrient Analysis in Vulnerable Populations.- A Generative AI based Architecture for Data Seeding in Software Testing.- Name Pattern Recognition: A Model Proposal Applied to the Anonymization of Unstructured Data.- Modular Architecture and Intelligent Routing for Chatbots.- A novel caching framework for e cient time-series analytics.- Named Entity Recognition for Performance and Synthesis Information of Perovskite Solar Cells Using SpaCy.- A Privacy-Preserving Framework for Cross-Institutional Medical Image Analysis Using Vision-Language Models.- An architecture for a reliability tool applied to distributed systems.- Predictive analysis with technical indicators and features selection for futures contracts trading.- Development of a Strategy for Duplication Search based on Multiple Hierarchically Organized Approaches.- Enhancing Stock Market Predictions: The Role of Feature Selection Techniques in Financial Modeling.- DRHRP: A Deep Reinforcement Learning Based Hybrid Routing Protocol for
UAV Enabled Wireless Networks.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.