Georgiev | Dynamic Calculus and Equations on Time Scales | E-Book | sack.de
E-Book

E-Book, Englisch, 336 Seiten

Georgiev Dynamic Calculus and Equations on Time Scales


1. Auflage 2023
ISBN: 978-3-11-118519-4
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 336 Seiten

ISBN: 978-3-11-118519-4
Verlag: De Gruyter
Format: EPUB
Kopierschutz: 6 - ePub Watermark



The latest advancements in time scale calculus are the focus of this book. New types of time-scale integral transforms are discussed in the book, along with how they can be used to solve dynamic equations. Novel numerical techniques for partial dynamic equations on time scales are described. New time scale inequalities for exponentially convex functions are introduced as well.

Georgiev Dynamic Calculus and Equations on Time Scales jetzt bestellen!

Zielgruppe


Institutional libraries and mathematicians, physicists, biologist


Autoren/Hrsg.


Weitere Infos & Material


1 Projector analysis of dynamic systems on time scales


Svetlin G. Georgiev
Department of Mathematics, Sorbonne University, Paris, France

Abstract

This chapter presents a projector analysis of dynamic systems on time scales. We investigate the linear time-varying dynamic systems and classify them into those of the first, second, third, and fourth kind. The considered systems are investigated in the case when they are regular with tractability index 1. Then, we define jets of a function of one independent time scale variable and jets of a function of n independent real variables and one independent time scale variable. We introduce jet spaces and give some of their properties. In the chapter, we also define differentiable functions and total derivatives. We consider nonlinear dynamic systems on arbitrary time scales. We define properly involved derivatives, constraints, and consistent initial values for the considered equations. We introduce a linearization for nonlinear dynamic systems and investigate the total derivative for regular linearized equations with tractability index 1.

1.1 Linear time-varying dynamic-algebraic equations


This chapter is devoted to linear time-varying dynamic-algebraic equations. We classify them into those of the first, second, third and fourth kind. We investigate them in the case when they are regular with tractability index 1.

Suppose T is a time scale with forward jump operator and delta differentiation operator s and ?, respectively. Let I?T.

1.1.1 Linear time-varying dynamic-algebraic equations of the first kind


In this section, we will investigate the following linear time-varying dynamic-algebraic equation:

(1.1)As(t)(Bx)?(t)=Cs(t)xs(t)+f(t),t?I,

where A:I?Mn×m, B:I?Mm×n, C:I?Mn×n, and f:I?Rn are given. Here, with Mp×q we denote the set of all p×q real matrices.

Definition 1.1.

Equation (1.1) is said to be a linear time-varying dynamic-algebraic equation of the first kind.

We will consider the solutions of (1.1) within the space CB1(I). Below, we remove the explicit dependence on t for the sake of notational simplicity.

1.1.1.1 A particular case

Suppose that A,C:I?Mn×n. Consider the equation

(1.2)Asx?=Csxs+f.

We will show that equation (1.2) can be reduced to equation (1.1). Suppose that P is a C1-projector along kerAs. Then

AsP=As

and

Asx?=AsPx?=As(Px)?-AsP?xs.

Hence, equation (1.2) takes the form

As(Px)?-AsP?xs=Csxs+f,

or

As(Px)?=(AsP?+Cs)xs+f.

Set

C1s=AsP?+Cs.

Thus, (1.2) takes the form

(1.3)As(Px)?=C1sxs+f,

i.?e., equation (1.2) is a particular case of equation (1.1).

Example.

Let

(1.4)T=2N0,A(t)=1000-t1000,C(t)=-t1t012tt01,t?T.

We have

s(t)=2t,t?T,

and

As(t)=1000-2t1000,Cs(t)=-2t12t014t2t01,t?T.

We will find a vector

y(t)=y1(t)y2(t)y3(t),t?T,

so that

As(t)y(t)=000,t?T.

We have

000=1000-2t1000y1(t)y2(t)y3(t)=y1(t)-2ty2(t)+y3(t)0,t?T,

whereupon

y1(t)y2(t)y3(t)=012t,t?T,

and the null projector to As(t), t?T, is

Q(t)=000001002t,t?T.

Hence,

P(t)=I-Q(t)=100010001-000001002t=10001-1001-2t,t?T,

is a projector along kerAs. Note that

P?(t)=00000000-2,C1s(t)=As(t)P?(t)+Cs(t)=1000-2t100000000000-2+-2t12t014t2t01=00000-2000+-2t12t014t2t01=-2t12t014t-22t01.

Equation (1.2) can be written as follows:

1000-2t1000x1?(t)x2?(t)x3?(t)=-2t12t014t2t01x1s(t)x2s(t)x3s(t)+f1(t)f2(t)f3(t),t?T,

or

x1?(t)=-2tx1s(t)+x2s(t)+2tx3s(t)+f1(t),-2tx2?(t)+x3?(t)=x2s(t)+4tx3s(t)+f2(t),0=2tx1s(t)+x3s(t)+f3(t),t?T.

This system, using (1.3), can be rewritten in the form

1000-2t100010001-1001-2tx1(t)x2(t)x3(t)?=-2t12t014t-22t01x1s(t)x2s(t)x3s(t)+f1(t)f2(t)f3(t),t?T,

or

1000-2t1000x1(t)x2(t)-x3(t)(1-2t)x3(t)?=-2tx1s(t)+x2s(t)+2tx3s(t)+f1(t)x2s(t)+(4t-2)x3s(t)+f2(t)2tx1s(t)+x3s(t)+f3(t),t?T,

or

1000-2t1000x1?(t)x2?(t)-x3?(t)(1-4t)x3?(t)-2x3(t)=-2tx1s(t)+x2s(t)+2tx3s(t)+f1(t)x2s(t)+(4t-2)x3s(t)+f2(t)2tx1s(t)+x3s(t)+f3(t),t?T,

or

x1?(t)=-2tx1s(t)+x2s(t)+2tx3s(t)+f1(t),-2t(x2?(t)-x3?(t))+(1-4t)x3?(t)-2x3(t)=x2s(t)+(4t-2)x3s(t)+f2(t),0=-2tx1s(t)+x3s(t)+f3(t),t?T,

or

x1?(t)=-2tx1s(t)+x2s(t)+2tx3s(t)+f1(t),-2tx2?(t)+(1-2t)x3?(t)=x2s(t)+(4t-2)x3s(t)+2x3(t)+f2(t),0=2tx1s(t)+x3s(t)+f3(t),t?T.

1.1.1.2 Standard form index 1 problems

In this section, we will investigate the equation

(1.5)As(Px)?=Csxs+f,

where kerA is a C1-space, C?C(I), P is a C1-projector along kerA. Then

AP=A.

Assume in addition that

Q=I-P

and

(B1)

the matrix

A1=A+CQ

is invertible.

Definition 1.2.

Equation (1.5) is said to be regular with tractability index 1.

We will start our investigations with the following useful lemma.

Lemma 1.1.

Suppose that (B1) holds. Then

A1-1A=P

and

A1-1CQ=Q.
Proof.

We have

A1P=(A+CQ)P=AP+CQP=A.

Since Q=I-P and kerP=kerA, we have imQ=kerA and

AQ=0.

Then

...


Svetlin G. Georgiev

(born 1974, Bulgaria) has worked in various areas of mathematics. His current focus: harmonic analysis, functional analysis, partial di erential equations, ordinary differential equations, Clifford and quaternion analysis, integral equations, dynamic calculus on time scales.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.