Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
Gent Engineering with Rubber
1. Auflage 2012
ISBN: 978-3-446-42871-3
Verlag: Hanser, Carl
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
How to Design Rubber Components
E-Book, Englisch, 453 Seiten
ISBN: 978-3-446-42871-3
Verlag: Hanser, Carl
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
It introduces the reader to the principles on which successful use of rubber depends and offers solutions to the questions engineers in rubber processing face every day:
- How is an elastomer chosen and a formulation developed
- Why is rubber highly-elastic and relatively strong
- How to estimate the stiffness and the strength of a product
- How to guarantee high quality and durability
The authors describe current practices in rubber engineering. At the end of each chapter, sample questions and problems (together with solutions) are provided, allowing the reader to gauge how well he/she has mastered the material.
Contents:
- Materials and Compounds
- Elasticity
- Dynamic Mechanical Properties
- Strength
- Mechanical Fatigue
- Durability
- Design of Components
- Finite Element Analysis
- Test and Specifications.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;Preface to Third Edition;16
3;Authors;18
4;1Introduction;20
4.1;1.1 Rubber in Engineering;20
4.2;1.2 Elastomers;21
4.3;1.3 Dynamic Application;22
4.4;1.4 General Design Principles;22
4.5;1.5 Thermal Expansivity, Pressure, and Swelling;23
4.6;1.6 Specific Applications and Operating Principles;24
4.7;1.7 Seal Life;27
4.8;1.8 Seal Friction;27
4.9;Acknowledgments.;28
4.10;References.;28
5;2Materials and Compounds;30
5.1;2.1 Introduction;30
5.2;2.2 Elastomer Types;31
5.2.1;2.2.1 General Purpose;31
5.2.1.1;2.2.1.1 Styrene-Butadiene Rubber (SBR);31
5.2.1.2;2.2.1.2 Polyisoprene (NR, IR);32
5.2.1.3;2.2.1.3 Polybutadiene (BR);33
5.2.2;2.2.2 Specialty Elastomers;33
5.2.2.1;2.2.2.1 Polychloroprene (CR);33
5.2.2.2;2.2.2.2 Acrylonitrile-Butadiene Rubber (NBR);34
5.2.2.3;2.2.2.3 Hydrogenated Nitrile Rubber (HNBR);34
5.2.2.4;2.2.2.4 Butyl Rubber (IIR);34
5.2.2.5;2.2.2.5 Ethylene-Propylene Rubber (EPR, EPDM);34
5.2.2.6;2.2.2.6 Silicone Rubber (MQ, VMQ, PMQ, PVMQ);35
5.2.2.7;2.2.2.7 Polysulfide Rubber (T);35
5.2.2.8;2.2.2.8 Chlorosulfonated Polyethylene (CSM);35
5.2.2.9;2.2.2.9 Chlorinated Polyethylene (CM);35
5.2.2.10;2.2.2.10 Ethylene-Methyl Acrylate Rubber (AEM);36
5.2.2.11;2.2.2.11 Acrylic Rubber (ACM);36
5.2.2.12;2.2.2.12 Fluorocarbon Rubbers;36
5.2.2.13;2.2.2.13 Epichlorohydrin Rubber (CO, ECO);36
5.2.2.14;2.2.2.14 Urethane Rubber;36
5.3;2.3 Compounding;37
5.3.1;2.3.1 Vulcanization and Curing;37
5.3.1.1;2.3.1.1 Sulfur Curing;37
5.3.1.2;2.3.1.2 Determination of Crosslink Density;40
5.3.1.3;2.3.1.3 Influence of Crosslink Density;41
5.3.1.4;2.3.1.4 Other Cure Systems;42
5.3.2;2.3.2 Reinforcement;42
5.3.3;2.3.3 Anti-Degradants;44
5.3.3.1;2.3.3.1 Ozone Attack;45
5.3.3.2;2.3.3.2 Oxidation;45
5.3.4;2.3.4 Process Aids;47
5.3.5;2.3.5 Extenders;48
5.3.6;2.3.6 Tackifiers;48
5.4;2.4 Typical Rubber Compositions;49
5.5;Acknowledgment.;53
5.6;References.;53
5.7;Problems for Chapter.2.;54
5.8;Answers to Problems for Chapter.2.;54
6;3Elasticity;56
6.1;3.1 Introduction;56
6.2;3.2 Elastic Properties at Small Strains;57
6.2.1;3.2.1 Elastic Constants;57
6.2.2;3.2.2 Relation Between Shear Modulus G and Composition;60
6.2.3;3.2.3 Stiffness of Components;63
6.2.3.1;3.2.3.1 Choice of Shear Modulus;63
6.2.3.2;3.2.3.2 Shear Deformations of Bonded Blocks and Hollow Cylindrical Tubes;64
6.2.3.3;3.2.3.3 Small Compressions or Extensions of Bonded Blocks;66
6.2.3.4;3.2.3.4 Compression of Blocks Between Frictional Surfaces;69
6.2.3.5;3.2.3.5 Maximum Allowable Loads in Tension and Compression;71
6.2.3.6;3.2.3.6 Indentation of Rubber Blocks by Rigid Indentors;72
6.2.3.7;3.2.3.7 Compression of O-rings;74
6.2.3.8;3.2.3.8 Protrusion of Rubber Through a Hole or Slit;74
6.3;3.3 Large Deformations;75
6.3.1;3.3.1 General Theory of Large Elastic Deformations;75
6.3.2;3.3.2 Forms for W Valid at Large Strains;77
6.3.3;3.3.3 Stress-Strain Relations in Selected Cases;78
6.3.3.1;3.3.3.1 Simple Extension;78
6.3.3.2;3.3.3.2 Equibiaxial Stretching;80
6.3.3.3;3.3.3.3 Constrained Tension (Pure Shear);80
6.3.4;3.3.4 Determining the Strain Energy Function W;82
6.3.4.1;3.3.4.1 Elastic Behavior of Filled Rubber Vulcanizates;84
6.3.4.2;3.3.4.2 Does Any Strain Energy Function Apply?;86
6.3.5;3.3.5 Other Stress-Strain Relations Valid at Large Strains;86
6.3.5.1;3.3.5.1 Simple Shear;86
6.3.5.2;3.3.5.2 Torsion;89
6.3.5.3;3.3.5.3 Instability in Torsion;91
6.3.5.4;3.3.5.4 Inflation of a Thin-Walled Tube [58];92
6.3.5.5;3.3.5.5 Inflation of a Spherical Shell (Balloon);93
6.3.5.6;3.3.5.6 Inflation of a Spherical Cavity; Explosive Decompression;95
6.3.5.7;3.3.5.7 Surface Creasing in Compression;96
6.4;3.4 Molecular Theory of Rubber Elasticity;97
6.4.1;3.4.1 Elastic Behavior of a Molecular Network;97
6.4.2;3.4.3 Effective Density of Network Strands;100
6.4.3;3.4.4 The Second Term in the Strain Energy Function;101
6.4.4;3.4.5 Concluding Remarks on Molecular Theories;102
6.5;Acknowledgments.;103
6.6;References.;103
6.7;Problems for Chapter.3.;106
6.8;Answers to Selected Problems for Chapter.3.;107
7;4Dynamic Mechanical Properties;108
7.1;4.1 Introduction;108
7.2;4.2 Stress Waves in Rubbery Solids, Transit Times, and Speeds of Retraction;109
7.3;4.3 Viscoelasticity;111
7.4;4.4 Dynamic Experiments;115
7.5;4.5 Energy Considerations;119
7.6;4.6 Motion of a Suspended Mass;121
7.7;4.7 Experimental Techniques;125
7.7.1;4.7.1 Forced Nonresonance Vibration;125
7.7.2;4.7.2 Forced Resonance Vibration;125
7.7.3;4.7.3 Free Vibration Methods;126
7.7.4;4.7.4 Rebound Resilience;126
7.7.5;4.7.5 Effect of Static and Dynamic Strain Levels;127
7.8;4.8 Application of Dynamic Mechanical Measurements;127
7.8.1;4.8.1 Heat Generation in Rubber Components;127
7.8.2;4.8.2 Vibration Isolation;128
7.8.3;4.8.3 Shock Absorbers;128
7.9;4.9 Effects of Temperature and Frequency;129
7.10;4.10 Thixotropic Effects in Filled Rubber Compounds;133
7.11;Acknowledgments.;135
7.12;References.;135
7.13;Problems for Chapter.4.;135
7.14;Answers to Problems for Chapter.4.;136
8;5Strength;138
8.1;5.1 Introduction;138
8.2;5.2 Fracture Mechanics;138
8.2.1;5.2.1 Analysis of the Test Pieces;141
8.2.2;5.2.2 The Strain Energy Concentration at a Crack Tip;142
8.3;5.3 Tear Behavior;144
8.4;5.4 Crack Growth under Repeated Loading;150
8.4.1;5.4.1 The Fatigue Limit and the Effect of Ozone;151
8.4.2;5.4.2 Physical Interpretation of G0;152
8.4.3;5.4.3 Effects of Type of Elastomer and Filler;154
8.4.4;5.4.4 Effect of Oxygen;154
8.4.5;5.4.5 Effects of Frequency and Temperature;156
8.4.6;5.4.6 Nonrelaxing Effects;156
8.4.7;5.4.7 Time-Dependent Failure;157
8.5;5.5 Ozone Attack;157
8.6;5.6 Tensile Strength;161
8.7;5.7 Crack Growth in Shear and Compression;163
8.8;5.8 Cavitation and Related Failures;166
8.9;5.9 Conclusions;167
8.10;References.;168
8.11;Problems for Chapter.5.;171
8.12;Answers to Problems for Chapter.5.;172
9;6Mechanical Fatigue;178
9.1;6.1 Introduction;178
9.2;6.2 Application of Fracture Mechanics to Mechanical Fatigue of Rubber;180
9.3;6.3 Initiation and Propagation of Cracks;182
9.3.1;6.3.1 Fatigue Crack Initiation;182
9.3.2;6.3.2 Fatigue Life and Crack Growth;183
9.3.3;6.3.3 Fatigue Crack Propagation: The Fatigue Crack Growth Characteristic;185
9.3.4;6.3.4 Fatigue Life Determinations from the Crack Growth Characteristics;187
9.4;6.4 Fatigue Crack Growth Test Methodology;189
9.4.1;6.4.1 Experimental Determination of Dynamic Tearing Energies for Fatigue Crack Propagation;189
9.4.2;6.4.2 Kinetics of Crack Growth;190
9.4.3;6.4.3 Effects of Test Variables on Fatigue Crack Growth Characteristics and Dynamic Fatigue Life;191
9.4.3.1;6.4.3.1 Waveform;191
9.4.3.2;6.4.3.2 Frequency;191
9.4.3.3;6.4.3.3 Temperature;191
9.4.3.4;6.4.3.4 Static Strain/Stress;193
9.5;6.5 Material Variables and Their Effect on Fatigue Crack Growth;195
9.5.1;6.5.1 Reinforcing Fillers and Compound Modulus;195
9.5.2;6.5.2 Elastomer Type;197
9.5.3;6.5.3 Vulcanizing System;198
9.5.4;6.5.3 Fatigue of Double Network Elastomers and Blends;200
9.6;6.6 Fatigue and Crack Growth of Rubber under Biaxial Stresses and Multiaxial Loading;201
9.7;6.7 Fatigue in Rubber Composites;203
9.7.1;6.7.1 Effect of Wires, Cords, and Their Spacing on Fatigue Crack Propagation;204
9.7.2;6.7.2 Effect of Minimum Strain or Stress;204
9.7.3;6.7.3 Comparison of S-N Curve and Fatigue Crack Propagation Constants for Rubber-Wire Composites [53];206
9.7.4;6.7.4 Fatigue of Two-Ply Rubber-Cord Laminates;207
9.8;6.8 Fatigue Cracking of Rubber in Compression and Shear Applications;208
9.8.1;6.8.1 Crack Growth in Compression;208
9.8.2;6.8.2 Crack Growth in Shear;211
9.9;6.9 Environmental Effects;212
9.10;6.10 Modeling and Life Predictions of Elastomeric Components;213
9.11;6.11 Fatigue Crack Propagation of Thermoplastic Elastomers;213
9.12;6.12 Durability of Thermoplastic Elastomers;214
9.13;6.13 Summary;216
9.14;Acknowledgments.;217
9.15;References.;217
9.16;Problems for Chapter.6.;219
9.17;Answers to Problems for Chapter.6.;220
10;7Durability;224
10.1;7.1 Introduction;224
10.2;7.2 Creep, Stress Relaxation, and Set;226
10.2.1;7.2.1 Creep;227
10.2.2;7.2.2 Stress Relaxation;227
10.2.3;7.2.3 Physical Relaxation;228
10.2.4;7.2.4 Chemical Relaxation;230
10.2.5;7.2.5 Compression Set and Recovery;230
10.2.6;7.2.6 Case History Study;232
10.3;7.3 Longevity of Elastomers in Air;233
10.3.1;7.3.1 Durability at Ambient Temperatures;233
10.3.2;7.3.2 Sunlight and Weathering;234
10.3.3;7.3.3 Ozone Cracking;234
10.3.4;7.3.4 Structural Bearings: Case Histories;235
10.3.4.1;7.3.4.1 Natural Rubber Pads for a Rail Viaduct after 100.Years of Service;235
10.3.4.2;7.3.4.2 Laminated Bridge Bearings after 20 Years of Service;236
10.4;7.4 Effect of Low Temperatures;239
10.4.1;7.4.1 Glass Transition;239
10.4.2;7.4.2 Crystallization;240
10.5;7.5 Effect of Elevated Temperatures;241
10.6;7.6 Effect of Fluid Environments;243
10.6.1;7.6.1 Aqueous Liquids;248
10.6.2;7.6.2 Hydrocarbon Liquids;251
10.6.3;7.6.3 Hydrocarbon and Other Gases;254
10.6.3.1;7.6.3.1 Pressurized CO2 for Assessing Interface Quality in Bonded Rubber/Rubber Systems;259
10.6.4;7.6.4 Effects of Temperature and Chemical Fluid Attack;259
10.6.5;7.6.5 Effect of Radiation;261
10.7;7.7 Durability of Rubber-Metal Bonds;262
10.7.1;7.7.1 Adhesion Tests;262
10.7.2;7.7.2 Rubber-Metal Adhesive Systems;264
10.7.3;7.7.3 Durability in Salt Water: Role of Electrochemical Potentials;265
10.8;7.8 Life Prediction Methodology;267
10.9;Acknowledgment.;270
10.10;References.;270
10.11;Problems for Chapter.7.;272
10.12;Answers to Problems for Chapter.7.;275
11;8Design of Components;278
11.1;8.1 Introduction;278
11.2;8.2 Shear and Compression Bearings;280
11.2.1;8.2.1 Planar Sandwich Forms;280
11.2.2;8.2.2 Laminate Bearings;286
11.2.3;8.2.3 Tube Form Bearings and Mountings;288
11.2.4;8.2.4 Effective Shape Factors;293
11.3;8.3 Vibration and Noise Control;294
11.3.1;8.3.1 Vibration Background Information;295
11.3.2;8.3.2 Design Requirements;297
11.3.3;8.3.3 Sample Problems;297
11.4;8.4 Practical Design Guidelines;306
11.5;8.5 Summary and Acknowledgments;307
11.6;Nomenclature.;308
11.7;References.;309
11.8;Problems for Chapter.8.;309
11.9;Answers to Problems for Chapter.8.;310
12;9aFinite Element Analysis;314
12.1;9a.1 Introduction;314
12.2;9a.2 Material Specification;316
12.2.1;9a.2.1 Metal;316
12.2.2;9a.2.2 Elastomers;317
12.2.2.1;9a.2.2.1 Linear;317
12.2.2.2;9a.2.2.2 Non-Linear;322
12.2.2.2.1;9a.2.2.2.1 Non-Linear Characteristics;322
12.2.2.2.2;9a.2.2.2.2 Non-Linear Material Models;322
12.2.2.2.3;9a.2.2.2.3 Obtaining Material Data;323
12.2.2.2.4;9a.2.2.2.4 Obtaining the Coefficients;328
12.2.2.2.5;9a.2.2.2.5 Mooney-Rivlin Material Coefficients;329
12.2.3;9a.2.3 Elastomer Material Model Correlation;330
12.2.3.1;9a.2.3.1 ASTM.412 Tensile Correlation;330
12.2.3.2;9a.2.3.2 Pure Shear Correlation;331
12.2.3.3;9a.2.3.3 Bi-Axial Correlation;331
12.2.3.4;9a.2.3.4 Simple Shear Correlation;331
12.3;9a.3 Terminology and Verification;332
12.3.1;9a.3.1 Terminology;332
12.3.2;9a.3.2 Types of FEA Models;333
12.3.3;9a.3.3 Model Building;334
12.3.4;9a.3.4 Boundary Conditions;336
12.3.5;9a.3.5 Solution;337
12.3.5.1;9a.3.5.1 Tangent Stiffness;337
12.3.5.2;9a.3.5.2 Newton-Raphson;338
12.3.5.3;9a.3.5.3 Non-Linear Material Behavior;338
12.3.5.4;9a.3.5.4 Viscoelasticity (See Chapter.4);338
12.3.5.5;9a.3.5.5 Model Verification;339
12.3.6;9a.3.6 Results;339
12.3.7;9a.3.7 Linear Verification;341
12.3.8;9a.3.8 Classical Verification – Non-Linear;342
12.4;9a.4 Example Applications;344
12.4.1;9a.4.1 Positive Drive Timing Belt;344
12.4.2;9a.4.2 Dock Fender;345
12.4.3;9a.4.3 Rubber Boot;348
12.4.4;9a.4.4 Bumper Design;350
12.4.5;9a.4.5 Laminated Bearing;352
12.4.6;9a.4.6 Down Hole Packer;354
12.4.7;9a.4.7 Bonded Sandwich Mount;356
12.4.8;9a.4.8 O-Ring;358
12.4.9;9a.4.9 Elastomer Hose Model;358
12.4.10;9a.4.10 Sample Belt;359
12.5;References.;361
13;9b Developments in Finite Element Analysis;364
13.1;9b.1 Introduction;364
13.2;9b.2 Material Models;364
13.2.1;9b.2.1 Hyperelastic Models;365
13.2.2;9b.2.2 Compressibility;369
13.2.3;9b.2.3 Deviations from Hyperelasticity;370
13.2.3.1;9b.2.3.1 Viscoelasticity;370
13.2.3.2;9b.2.3.2 Stress-Softening;371
13.3;9b.3 FEA Modelling Techniques;372
13.3.1;9b.3.1 Pre- and Post-Processing;372
13.3.2;9b.3.2 Choice of Elements;373
13.3.3;9b.3.3 Convergence;374
13.3.4;9b.3.4 Fracture Mechanics;375
13.4;9b.4 Verification;375
13.4.1;9b.4.1 Stresses and Strains;376
13.4.2;9b.4.2 Tearing Energy;377
13.5;9b.5 Applications;378
13.5.1;9b.5.1 Load Deflection;378
13.5.2;9b.5.2 Failure;379
13.6;References.;381
14;10Tests and Specifications;384
14.1;10.1 Introduction;384
14.1.1;10.1.1 Standard Test Methods;384
14.1.2;10.1.2 Purpose of Testing;385
14.1.3;10.1.3 Test Piece Preparation;385
14.1.4;10.1.4 Time Between Vulcanization and Testing;386
14.1.5;10.1.5 Scope of This Chapter;386
14.2;10.2 Measurement of Design Parameters;386
14.2.1;10.2.1 Young’s Modulus;387
14.2.2;10.2.2 Shear Modulus;389
14.2.3;10.2.3 Creep and Stress Relaxation;391
14.2.3.1;10.2.3.1 Creep;392
14.2.3.2;10.2.3.2 Stress Relaxation;393
14.3;10.3 Quality Control Tests;393
14.3.1;10.3.1 Hardness;394
14.3.1.1;10.3.1.1 Durometer;394
14.3.1.2;10.3.1.2 International Rubber Hardness Tester;395
14.3.2;10.3.2 Tensile Properties;397
14.3.3;10.3.3 Compression Set;399
14.3.4;10.3.4 Accelerated Aging;400
14.3.4.1;10.3.4.1 Aging in an Air Oven;400
14.3.4.2;10.3.4.2 Ozone Cracking;401
14.3.5;10.3.5 Liquid Resistance;403
14.3.5.1;10.3.5.1 Factors in Swelling;403
14.3.5.2;10.3.5.2 Swelling Tests;404
14.3.6;10.3.6 Adhesion to Substrates;404
14.3.7;10.3.7 Processability;407
14.4;10.4 Dynamic Properties;409
14.4.1;10.4.1 Resilience;411
14.4.2;10.4.2 Yerzley Oscillograph;412
14.4.3;10.4.3 Resonant Beam;413
14.4.4;10.4.4 Servohydraulic Testers;414
14.4.5;10.4.5 Electrodynamic Testers;415
14.4.6;10.4.6 Preferred Test Conditions;416
14.5;10.5 Tests for Tires;416
14.5.1;10.5.1 Bead Unseating Resistance;417
14.5.2;10.5.2 Tire Strength;418
14.5.3;10.5.3 Tire Endurance;419
14.5.4;10.5.4 High Speed Performance;419
14.6;10.6 Specifications;420
14.6.1;10.6.1 Classification System;420
14.6.1.1;10.6.1.1 Type;421
14.6.1.2;10.6.1.2 Class;422
14.6.1.3;10.6.1.3 Further Description;422
14.6.2;10.6.2 Tolerances;425
14.6.2.1;10.6.2.1 Molded Products;425
14.6.2.2;10.6.2.2 Extruded Products;427
14.6.2.3;10.6.2.3 Load-Deflection Characteristics;427
14.6.3;10.6.3 Rubber Bridge Bearings;428
14.6.3.1;10.6.3.1 Function;428
14.6.3.2;10.6.3.2 Design Code;429
14.6.3.3;10.6.3.3 Materials Specification;430
14.6.4;10.6.4 Pipe Sealing Rings;432
14.6.4.1;10.6.4.1 Function;432
14.6.4.2;10.6.4.2 Materials;432
14.6.4.3;10.6.4.3 Tensile Properties;432
14.6.4.4;10.6.4.4 Compression Set;433
14.6.4.5;10.6.4.5 Low Temperature Flexibility;433
14.6.4.6;10.6.4.6 Oven Aging;434
14.6.4.7;10.6.4.7 Oil Resistance;434
14.6.4.8;10.6.4.8 Closing Remarks;434
14.7;References.;435
14.8;Problems for Chapter.10.;438
14.9;Answers to Problems for Chapter.10.;439
15;Appendix: Tables of Physical Constants;442
16;Index;446
Contents: • Materials and Compounds• Elasticity• Dynamic Mechanical Properties• Strength• Mechanical Fatigue• Durability• Design of Components• Finite Element Analysis• Test and Specifications.