E-Book, Englisch, 320 Seiten
Reihe: Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series
Geiser Iterative Splitting Methods for Differential Equations
Erscheinungsjahr 2011
ISBN: 978-1-4398-6983-3
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 320 Seiten
Reihe: Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series
ISBN: 978-1-4398-6983-3
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations.
In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential equations and spatial- and time-dependent differential equations.
The practical part of the text applies the methods to benchmark and real-life problems, such as waste disposal, elastics wave propagation, and complex flow phenomena. The book also examines the benefits of equation decomposition. It concludes with a discussion on several useful software packages, including r3t and FIDOS.
Covering a wide range of theoretical and practical issues in multiphysics and multiscale problems, this book explores the benefits of using iterative splitting schemes to solve physical problems. It illustrates how iterative operator splitting methods are excellent decomposition methods for obtaining higher-order accuracy.
Zielgruppe
Mathematicians, computer scientists, engineers, and physicists.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
Weitere Infos & Material
Introduction
Model Problems
Related Models for Decomposition
Examples in Real-Life Applications
Iterative Decomposition of Ordinary Differential Equations
Historical Overview
Decomposition Ideas
Introduction to Classical Splitting Methods
Iterative Splitting Method
Consistency Analysis of the Iterative Splitting Method
Stability Analysis of the Iterative Splitting Method for Bounded Operators
Decomposition Methods for Partial Differential Equations
Iterative Schemes for Unbounded Operators
Computation of the Iterative Splitting Methods: Algorithmic Part
Exponential Runge-Kutta Methods to Compute Iterative Splitting Schemes
Matrix Exponentials to Compute Iterative Splitting Schemes
Algorithms
Extensions of Iterative Splitting Schemes
Embedded Spatial Discretization Methods
Domain Decomposition Methods Based on Iterative Operator Splitting Methods
Successive Approximation for Time-Dependent Operators
Numerical Experiments
Introduction
Benchmark Problems 1: Introduction
Benchmark Problems 2: Comparison with Standard Splitting Methods
Benchmark Problems 3: Extensions to Iterative Splitting Methods
Real-Life Applications
Conclusion to Numerical Experiments: Discussion of Some Delicate Problems
Summary and Perspectives
Software Tools
Software Package Unstructured Grids
Software Package r3t
Solving PDEs Using FIDOS
Appendix
Bibliography
Index