Geiser Iterative Splitting Methods for Differential Equations


Erscheinungsjahr 2011
ISBN: 978-1-4398-6983-3
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, 320 Seiten

Reihe: Chapman & Hall/CRC Numerical Analysis and Scientific Computing Series

ISBN: 978-1-4398-6983-3
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Iterative Splitting Methods for Differential Equations explains how to solve evolution equations via novel iterative-based splitting methods that efficiently use computational and memory resources. It focuses on systems of parabolic and hyperbolic equations, including convection-diffusion-reaction equations, heat equations, and wave equations.

In the theoretical part of the book, the author discusses the main theorems and results of the stability and consistency analysis for ordinary differential equations. He then presents extensions of the iterative splitting methods to partial differential equations and spatial- and time-dependent differential equations.

The practical part of the text applies the methods to benchmark and real-life problems, such as waste disposal, elastics wave propagation, and complex flow phenomena. The book also examines the benefits of equation decomposition. It concludes with a discussion on several useful software packages, including r3t and FIDOS.

Covering a wide range of theoretical and practical issues in multiphysics and multiscale problems, this book explores the benefits of using iterative splitting schemes to solve physical problems. It illustrates how iterative operator splitting methods are excellent decomposition methods for obtaining higher-order accuracy.

Geiser Iterative Splitting Methods for Differential Equations jetzt bestellen!

Zielgruppe


Mathematicians, computer scientists, engineers, and physicists.


Autoren/Hrsg.


Weitere Infos & Material


Introduction

Model Problems
Related Models for Decomposition
Examples in Real-Life Applications

Iterative Decomposition of Ordinary Differential Equations
Historical Overview
Decomposition Ideas
Introduction to Classical Splitting Methods
Iterative Splitting Method
Consistency Analysis of the Iterative Splitting Method
Stability Analysis of the Iterative Splitting Method for Bounded Operators

Decomposition Methods for Partial Differential Equations
Iterative Schemes for Unbounded Operators

Computation of the Iterative Splitting Methods: Algorithmic Part
Exponential Runge-Kutta Methods to Compute Iterative Splitting Schemes
Matrix Exponentials to Compute Iterative Splitting Schemes
Algorithms

Extensions of Iterative Splitting Schemes
Embedded Spatial Discretization Methods
Domain Decomposition Methods Based on Iterative Operator Splitting Methods
Successive Approximation for Time-Dependent Operators

Numerical Experiments
Introduction
Benchmark Problems 1: Introduction
Benchmark Problems 2: Comparison with Standard Splitting Methods
Benchmark Problems 3: Extensions to Iterative Splitting Methods
Real-Life Applications
Conclusion to Numerical Experiments: Discussion of Some Delicate Problems

Summary and Perspectives

Software Tools
Software Package Unstructured Grids
Software Package r3t
Solving PDEs Using FIDOS

Appendix
Bibliography
Index


Juergen Geiser is a researcher in the Department of Mathematics at the Humboldt-University of Berlin. His research interests include numerical and computational analysis, partial differential equations, decomposition and discretization methods for hyperbolic and parabolic equations, optimization, scientific computing, and interface analysis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.