Geertsema | Machine Learning for Managers | Buch | 978-1-032-36243-4 | sack.de

Buch, Englisch, 180 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 443 g

Geertsema

Machine Learning for Managers


1. Auflage 2023
ISBN: 978-1-032-36243-4
Verlag: Routledge

Buch, Englisch, 180 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 443 g

ISBN: 978-1-032-36243-4
Verlag: Routledge


Machine learning can help managers make better predictions, automate complex tasks and improve business operations. Managers who are familiar with machine learning are better placed to navigate the increasingly digital world we live in. There is a view that machine learning is a highly technical subject that can only be understood by specialists. However, many of the ideas that underpin machine learning are straightforward and accessible to anyone with a bit of curiosity. This book is for managers who want to understand what machine learning is about, but who lack a technical background in computer science, statistics or math.

The book describes in plain language what machine learning is and how it works. In addition, it explains how to manage machine learning projects within an organization.

This book should appeal to anyone that wants to learn more about using machine learning to drive value in real-world organizations.

Geertsema Machine Learning for Managers jetzt bestellen!

Zielgruppe


Postgraduate, Professional, and Undergraduate Advanced


Autoren/Hrsg.


Weitere Infos & Material


Part 1: Understanding Machine Learning 1. Let's jump right in 2. Different kinds of ML 3. Creating ML models 4. Linear models 5. Neural networks 6. Tree-based approaches, ensembles and boosting 7. Dimensionality reduction and clustering 8. Unstructured data 9. Explainable AI Part 2: Managing Machine Learning Projects 10. The ML system lifecycle 11. The big picture 12. Creating value with ML 13. Making the business case 14. The ML pipeline 15. Development 16. Deployment and monitoring


Paul Geertsema is an academic and consultant in the areas of finance, data science and machine learning. His research involves the application of contemporary machine learning methods to solving problems in finance and business. He teaches Modern Investment Theory and Management (final-year undergraduate) and Financial Machine Learning (postgraduate) at the University of Auckland. Dr Geertsema has published in numerous international peer-reviewed journals, including the Journal of Accounting Research and the Journal of Banking and Finance, and serves on the board of the AI Researchers Association. Prior to his return to academia, Dr Geertsema worked at Barclays Capital as a derivatives trader in Hong Kong and as a sell-side research analyst in London.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.