Buch, Englisch, 184 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 3377 g
Reihe: Studies in Universal Logic
The Arithmetical Foundations of Logic
Buch, Englisch, 184 Seiten, Format (B × H): 168 mm x 240 mm, Gewicht: 3377 g
Reihe: Studies in Universal Logic
ISBN: 978-3-319-22086-4
Verlag: Springer International Publishing
This book offers an original contribution to the foundations of logic and mathematics and focuses on the internal logic of mathematical theories, from arithmetic or number theory to algebraic geometry. Arithmetical logic is the term used to refer to the internal logic of classical arithmetic, here called Fermat-Kronecker arithmetic and combines Fermat’s method of infinite descent with Kronecker’s general arithmetic of homogeneous polynomials. The book also includes a treatment of theories in physics and mathematical physics to underscore the role of arithmetic from a constructivist viewpoint. The scope of the work intertwines historical, mathematical, logical and philosophical dimensions in a unified critical perspective; as such, it will appeal to a broad readership from mathematicians to logicians, to philosophers interested in foundational questions. Researchers and graduate students in the fields of philosophy and mathematics will benefit from the author’s critical approach to the foundations of logic and mathematics.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
- Mathematik | Informatik Mathematik Mathematik Allgemein Zahlensysteme
- Mathematik | Informatik Mathematik Mathematik Allgemein Mathematische Logik
- Mathematik | Informatik Mathematik Geometrie Algebraische Geometrie
- Naturwissenschaften Physik Physik Allgemein Theoretische Physik, Mathematische Physik, Computerphysik
Weitere Infos & Material
Foreword.- 1.Introduction.- 2.Arithmetization of Analysis and Algebra.- 3.Arithmetization of Logic.- 4.Kronecker's Foundational Programme in Contemporary Mathematics.- 5.Arithmetical Foundations for Physical Theories.- 6.The Internal Logic of Constructive Mathematics.- 7.The Internal Consistency of Arithmetic with Infinite Descent. A Syntactical Proof.- 8 Conclusion. Arithmetism versus Logicism or Kronecker contra Frege.- References.