E-Book, Englisch, 498 Seiten
A Focus on South Western Gondwana
E-Book, Englisch, 498 Seiten
ISBN: 978-0-08-093277-4
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
The book is organized in three sections. Section one is an introduction to the neoproterozoic and Cambrian seen as a time of upheavals, extremes and innovations. Section two comprises nineteen chapters dealing with the neoproterozoic-Cambrian events in southwestern Gondwana. Section three will provide a synthesis on every major topic, and a critical assessment of the global implications of the presented data.
* The book deals with the record of important Neoproterozoic to Early Palaeozoic events in southwestern Gondwana, that heralded the Cambrian explosion and the dawn of modern ecosystems.
It contains a detailed account of the Neoproterozoic to Cambrian geological record in a poorly-known part of the world, which is at the same time key to understand fundamental processes at the Proterozoic-Cambrian transition. The emphasis is placed on litho-, bio-, chemostratigraphy and magmatism.
Autoren/Hrsg.
Weitere Infos & Material
1;Front cover;1
2;Neoproterozoic-Cambrian Tectonics, Global Change and Evolution: A Focus on South Western Gondwana;4
3;Copyright page;5
4;Contents;6
5;Contributors;12
6;Preface;16
6.1;Acknowledgements;17
7;Section I: Introduction;18
7.1;Part I: Introduction;18
7.1.1;Chapter 1. The Neoproterozoic and Cambrian: A Time of Upheavals, Extremes and Innovations;20
7.1.1.1;1.1. The Neoproterozoic World;20
7.1.1.2;1.2. Tectonic Upheaval and Geodynamic Twists: The Tale of Two Supercontinents;20
7.1.1.3;1.3. The Ocean and Atmosphere: Oxygenation and Anomalies;22
7.1.1.4;1.4. Climatic Extremes and Conundrums;24
7.1.1.5;1.5. Permissive Ecology and Neoproterozoic-Cambrian Climate;26
7.1.1.6;1.6. Emergence of Metazoa: A New World Order;27
7.1.1.7;1.7. Conclusions;28
8;Section II: Neoproterozoic-cambrian events in SW Gondwana;30
8.1;Part 2: Neoproterozoic-Cambrian Evolution of theAmazonian Palaeocontinent;30
8.1.1;Chapter 2. The Amazonian Palaeocontinent;32
8.1.1.1;2.1. Introduction;32
8.1.1.2;2.2. Lithostratigraphy;34
8.1.1.3;2.3. Chemostratigraphy;40
8.1.1.4;2.4. Geochronological Constraints;42
8.1.1.5;2.5. Palaeomagnetic Constraints;44
8.1.1.6;2.6. Conclusions and Regional Analysis;44
8.1.1.7;Acknowledgements;45
8.2;Part 3: Neoproterozoic-Cambrian Evolution of the São Francisco Palaeocontinent;46
8.2.1;Chapter 3. The São Francisco Palaeocontinent;48
8.2.1.1;3.1. Introduction;48
8.2.1.2;3.2. Synthesis of the Lithostratigraphic Units;49
8.2.1.3;3.3. Isotope Chemostratigraphy;77
8.2.1.4;3.4. Geochronology and Provenance: Synthesis of U-Pb and Sm-Nd Data;81
8.2.1.5;3.5. Synthesis of Neoproterozoic Mineralisations: Lead, Zinc, Fluorine, Barium and Phosphates;83
8.2.1.6;3.6. Conclusions and Regional Analysis;84
8.2.1.7;Acknowledgements;86
8.3;Part 4: Neoproterozoic-Cambrian Evolution of the Rio de La Plata Palaeocontinent;88
8.3.1;Chapter 4.1. Extension and General Evolution of the Río de la Plata Craton;90
8.3.1.1;Chapter 4.2. Lithostratigraphy;104
8.3.1.1.1;4.2.1. Introduction;104
8.3.1.1.2;4.2.2. Tandilia System, Argentina ;104
8.3.1.1.3;4.2.3. Nico Pérez Terrane, Uruguay;109
8.3.1.1.4;4.2.4. Piedras de Afilar Formation;116
8.3.1.1.5;Acknowledgements;118
8.3.1.2;Chapter 4.3. Biostratigraphy;120
8.3.1.2.1;4.3.1. Introduction;120
8.3.1.2.2;4.3.2. Tonian and Cryogenian Fossil Record;120
8.3.1.2.3;4.3.3. Ediacaran Fossil Record;122
8.3.1.2.4;4.3.4. Cambrian Fossil Record;129
8.3.1.2.5;4.3.5. Biostratigraphic Correlations and Discussion;130
8.3.1.2.6;Acknowledgements;131
8.3.1.3;Chapter 4.4. Chemostratigraphy;132
8.3.1.3.1;4.4.1. Introduction;132
8.3.1.3.2;4.4.2. Carbon-Isotope Chemostratigraphy;132
8.3.1.3.3;4.4.3. Strontium-Isotope Chemostratigraphy;137
8.3.1.3.4;4.4.4. Synthesis;138
8.3.1.3.5;Acknowledgements;139
8.3.1.4;Chapter 4.5. Palaeoclimatic Events;140
8.3.1.4.1;4.5.1. Palaeoclimatic Evolution of the Río de la Plata Palaeocontinent in the Neoproterozoic-Cambrian;140
8.3.1.4.2;4.5.2. Diamictites of the Las Ventanas and Playa Hermosa Formations;141
8.3.1.4.3;4.5.3. Diamictites in Tandilia;143
8.3.1.4.4;4.5.4. Other Units;143
8.3.1.4.5;4.5.5. Indirect Evidence of Late Ediacaran Glaciation;144
8.3.1.4.6;4.5.6. Record of Cambrian Global Warming;146
8.3.1.4.7;4.5.7. Discussion and Summary;146
8.3.1.4.8;Acknowledgements;147
8.3.1.5;Chapter 4.6. Palaeogeography;148
8.3.1.5.1;4.6.1. Río de la Plata Craton: A Part of Rodinia;148
8.3.1.5.2;4.6.2. Latest Cryogenian-Early Ediacaran Rifting;150
8.3.1.5.3;4.6.3. Ediacaran Drift Phase and Passive Margin;153
8.3.1.5.4;4.6.4. Evolution of the Western Boundary of the Río de la Plata Palaeocontinent;154
8.3.1.5.5;4.6.5. Lower Cambrian Búzios Orogeny;156
8.3.1.5.6;4.6.6. Cambrian Anorogenic Magmatism;157
8.3.1.5.7;4.6.7. Palaeomagnetic Constraints;158
8.3.1.5.8;4.6.8. Conclusions;158
8.3.1.5.9;Acknowledgements;158
8.3.1.6;4.1. Introduction;90
8.3.1.7;4.12. Main Outcrop Areas;92
8.3.1.8;4.13. Conclusions;100
8.3.1.9;Acknowledgements;102
8.4;Part 5: Neoproterozoic to Early Palaeozoic Evolution of Southwestern Africa;160
8.4.1;Chapter 5.1. guration of Pan-African Orogenic Belts in Southwestern Africa;162
8.4.2;Chapter 5.2. Continental Rifting;170
8.4.2.1;5.2.1. Introduction;170
8.4.2.2;5.2.2. Pre-Rift Magmatism;170
8.4.2.3;5.2.3. Rift Sedimentation;172
8.4.2.4;5.2.4. Syn-Rift Magmatism;174
8.4.2.5;Acknowledgements;176
8.4.3;Chapter 5.3. Passive Continental Margin Evolution;178
8.4.3.1;5.3.1. Introduction;178
8.4.3.2;5.3.2. Spreading-Phase Sedimentary Successions in the Damara Orogen;179
8.4.3.3;5.3.3. Post-Rift Evolution in the Gariep Belt;193
8.4.3.4;5.3.4. Relics of Oceanic Crust;195
8.4.3.5;Acknowledgements;198
8.4.4;Chapter 5.4. Syn- to Late-Orogenic Sedimentary Basins of Southwestern Africa;200
8.4.4.1;5.4.1. Introduction;200
8.4.4.2;5.4.2. Stratigraphy and Depositional Environment;201
8.4.4.3;Acknowledgements;220
8.4.5;Chapter 5.5. Orogenic Tectono-Thermal Evolution;222
8.4.5.1;5.5.1. The Kaoko Belt;222
8.4.5.2;5.5.2. The Damara Belt;229
8.4.5.3;5.5.3. The Gariep Belt;233
8.4.5.4;5.5.4. The Saldania Belt;235
8.4.5.5;Acknowledgements;235
8.4.6;Chapter 5.6. Syn- to Post-Orogenic Magmatism;236
8.4.6.1;5.6.1. Plutonic Rocks in the Kaoko Belt;236
8.4.6.2;5.6.2. Plutonic Rocks in the Damara Belt;237
8.4.6.3;5.6.3. Post-Orogenic Plutonism in the Gariep Belt;241
8.4.6.4;5.6.4. Plutonism in the Saldania Belt;241
8.4.6.5;Acknowledgements;243
8.4.7;Chapter 5.7. Mineral Deposits;244
8.4.7.1;5.7.1. Introduction;244
8.4.7.2;5.7.2. Rifting- and Spreading-Phase Deposits;244
8.4.7.3;5.7.3. Syn- and Post-Tectonic Deposits;245
8.4.7.4;Acknowledgements;246
8.4.8;5.8. Geodynamic Synthesis of the Damara Orogen Sensu Lato;248
8.4.8.1;Acknowledgements;252
8.5;Part 6: Neoproterozoic-Cambrian Evolution of The Pampean Orogen;254
8.5.1;Chapter 6. The Pampean Orogen: Ediacaran-Lower Cambrian Evolutionary History of Central and Northwest Region of Argentina;256
8.5.1.1;6.1. Introduction;256
8.5.1.2;6.2. Geological Setting;257
8.5.1.3;6.3. Interpretation of the Regional Outline;257
8.5.1.4;6.4. The Puncoviscana Basin;260
8.5.1.5;6.5. Tilcarian Orogeny;268
8.5.1.6;6.6. Plutonic Rocks;268
8.5.1.7;6.7. Conclusions;270
8.5.1.8;Acknowledgements;271
8.6;Part 7: Microcontinents and Suspect Terranes in SW Gondwana;272
8.6.1;Chapter 7.1. The Paranapanema Lithospheric Block: Its Nature and Role in the Accretion of Gondwana;274
8.6.1.1;7.1.1. Introduction;274
8.6.1.2;7.1.2. Support from Regional Geology and Geotectonics;275
8.6.1.3;7.1.3. Support from Gravity: Means and Methods;280
8.6.1.4;7.1.4. Magnetotellurics and Magnetometry;283
8.6.1.5;7.1.5. Seismic Data;284
8.6.1.6;7.1.6. Support from Geochemistry and Isotope Geology;284
8.6.1.7;7.1.7. The Paranapanema Block and Its Role in the Accretion of Gondwana;287
8.6.1.8;Acknowledgements;289
8.6.2;Chapter 7.2. The Evolution and Tectonic Setting of the Luis Alves Microplate of Southeastern Brazil: An Exotic Terrane during the Assembly of Western Gondwana;290
8.6.2.1;7.2.1. Introduction;290
8.6.2.2;7.2.2. Regional Geological Divisions;292
8.6.2.3;7.2.3. Basement Rocks of the Luís Alves Microplate;292
8.6.2.4;7.2.4. Neoproterozoic Units of the Luís Alves Microplate;293
8.6.2.5;7.2.5. The Age of the Luís Alves Microplate Basement;297
8.6.2.6;7.2.6. Interpretation and Discussion of Radiometric Results;300
8.6.2.7;7.2.7. Tectonic Implications;300
8.6.2.8;7.2.8. Conclusion;303
8.6.2.9;Acknowledgements;304
9;Section III: Synthesis and Global Implications;310
9.1;Part 8: Palaeogeographic Evolution from Rodinia to Gondwana ;310
9.1.1;Chapter 8. Tectonic Events and Palaeogeographic Evolution of Southwestern Gondwana in the Neoproterozoic and Cambrian;312
9.1.1.1;8.1. Introduction;312
9.1.1.2;8.2. Ocean Basins and Corresponding Sedimentary Successions;313
9.1.1.3;8.3. Key Blocks in Southwestern Gondwana Amalgamation;315
9.1.1.4;8.4. Evidence of Westward Sequential Opening and Closure of Basins;319
9.1.1.5;8.5. Proposed Geodynamic Model and Possible Causes;328
9.1.1.6;8.6. Discussion and Environmental Consequences;332
9.2;Part 9: Neoproterozoic-Cambrian Biota;334
9.2.1;Chapter 9.1. Neoproterozoic Acritarch Evolution;336
9.2.1.1;9.1.1. Tonian to Early Cryogenian Diversification (gt1,000-700Ma);336
9.2.1.2;9.1.2. Mid-Cryogenian Crisis (770-740Ma);339
9.2.1.3;9.1.3. Mid-Cryogenian Recovery (ca. 740-700Ma);339
9.2.1.4;9.1.4. Late Cryogenian Crisis (ca. 700-635Ma);339
9.2.1.5;9.1.5. Early Ediacaran Recovery (635-ca. 580Ma);340
9.2.1.6;9.1.6. Middle Ediacaran Explosive Diversification (ca. 580-560Ma);340
9.2.1.7;9.1.7. Late Ediacaran Plankton Crisis (ca. 560-542Ma);341
9.2.1.8;9.1.8. Cambrian Explosive Radiation (542-470Ma);342
9.2.1.9;9.1.9. Discussion;342
9.2.1.10;9.1.10. Conclusions;342
9.2.1.11;Acknowledgements;343
9.2.2;Chapter 9.2. Skeletonised Metazoans and Protists;344
9.2.2.1;9.2.1. Introduction;344
9.2.2.2;9.2.2. Calcareous Skeletons;345
9.2.2.3;9.2.3. Siliceous Skeletons;349
9.2.2.4;9.2.4. Phosphatic Skeletons;350
9.2.2.5;9.2.5. Agglutinated Skeletons;351
9.2.2.6;9.2.6. Discussion and Conclusions;354
9.2.2.7;Acknowledgements;355
9.2.3;Chapter 9.3. Trace Fossils and the Agronomic Revolution at the Neoproterozoic-Cambrian Transition in Southwest Gondwana;356
9.2.3.1;9.3.1. Introduction;356
9.2.3.2;9.3.2. Trace Fossils in Northwest Argentina (South America);357
9.2.3.3;9.3.3. Trace Fossils of the Nama Group;359
9.2.3.4;9.3.4. Trace Fossils of the Vanrhynsdorp Group (ca. 550-535Ma);361
9.2.3.5;9.3.5. Conclusions;362
9.2.3.6;Acknowledgements;364
9.3;Part 10: Neoproterozoic-Cambrian Biogeochemical Evolution ;366
9.3.1;Chapter 10. Neoproterozoic-Cambrian Biogeochemical Evolution;368
9.3.1.1;10.1. Introduction;368
9.3.1.2;10.2. Tectonics and Palaeoclimate;369
9.3.1.3;10.3. The Carbon Isotope Record;371
9.3.1.4;10.4. The Strontium Isotope Record;373
9.3.1.5;10.5. The Sulphur Isotope Record;374
9.3.1.6;10.6. Ediacaran-Cambrian Palaeobiology;376
9.3.1.7;10.7. Late Neoproterozoic-Cambrian Ocean Redox;379
9.3.1.8;10.8. Reorganisation of the Marine Carbon Cycle;381
9.3.1.9;10.9. Conclusions;382
9.3.1.10;Acknowledgements;382
9.4;Part 11: Neoproterozoic-Cambrian Palaeoclimatic Events;384
9.4.1;Chapter 11.1. Neoproterozoic to Cambrian Palaeoclimatic Events in Southwestern Gondwana;386
9.4.1.1;11.1.1. Constructing a Global Record of Neoproterozoic Palaeoclimatic Variations;386
9.4.1.2;11.1.2. Age Constraints for Cryogenian Glacial Deposits in Southwestern Gondwana;388
9.4.1.3;11.1.3. Chemostratigraphic Records of Palaeoclimatic Events in Southwestern Gondwana;390
9.4.1.4;11.1.4. A Synthesis of the Palaeoclimatic Puzzle from Southwestern Gondwana;400
9.4.1.5;11.1.5. Conclusions;405
9.4.1.6;Acknowledgements;405
9.4.2;Chapter 11.2. Neoproterozoic Glacial Events in Eurasia;406
9.4.2.1;11.2.1. Introduction;406
9.4.2.2;11.2.2. Middle Cryogenian Glaciations;406
9.4.2.3;11.2.3. Late Cryogenian Glaciations;409
9.4.2.4;11.2.4. Middle Ediacaran Glaciation;416
9.4.2.5;11.2.5. Late Ediacaran Glaciations;417
9.4.2.6;11.2.6. Discussion;419
9.4.2.7;11.2.7. Conclusions;420
9.4.2.8;Acknowledgments;420
10;References;422
11;Subject Index;472