Gao / Wang / Voros Collaborative Computing: Networking, Applications and Worksharing

19th EAI International Conference, CollaborateCom 2023, Corfu Island, Greece, October 4-6, 2023, Proceedings, Part II

E-Book, Englisch, Band 562, 536 Seiten, eBook

Reihe: Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

ISBN: 978-3-031-54528-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



The three-volume set LNICST 561, 562  563 constitutes the refereed post-conference proceedings of the 19th EAI International Conference on Collaborative Computing: Networking, Applications and Worksharing, CollaborateCom 2023, held in Corfu Island, Greece, during October 4-6, 2023.The 72 full papers presented in these proceedings were carefully reviewed and selected from 176 submissions. The papers are organized in the following topical sections:Volume I : Collaborative Computing, Edge Computing & Collaborative working, Blockchain applications, Code Search and Completion, Edge Computing Scheduling and Offloading.Volume II: Deep Learning and Application, Graph Computing, Security and Privacy Protection and Processing and Recognition.Volume III: Onsite Session Day2, Federated learning and application, Collaborative working, Edge Computing and Prediction, Optimization and Applications.
Gao / Wang / Voros Collaborative Computing: Networking, Applications and Worksharing jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Deep Learning and Application.- Task Offloading in UAV-to-Cell MEC Networks: Cell Clustering and Path Planning.LAMB: Label-induced Mixed-level Blending for Multimodal Multi-label Emotion Detection.- MSAM: Deep Semantic Interaction Network for Visual Question Answering.- Defeating the non-stationary opponent using deep reinforcement learning and opponent modeling.- Multi-agent Deep Reinforcement Learning-based Approach to Mobility-aware Caching.- D-AE: A Discriminant Encode-Decode Nets For Data Generation.- ECCRG: A Emotion- and Content-controllable Response Generation Model.- Origin-Destination Convolution Recurrent Network: A Novel OD Matrix Prediction Framework.- MD-TransUNet: TransUNet with Multi-Attention and Dilated Convolution for Brain Stroke Lesion Segmentation.- Graph Computing.- DGFormer: An Effective Dynamic Graph Transformer based Anomaly Detection Model for IoT Time Series.- STAPointGNN: Spatial-Temporal Attention Graph Neural Network for Gesture Recognition Using Millimeter-Wave Radar.- NPGraph: An Efficient Graph Computing Model in NUMA-Based Persistent Memory Systems.- tHR-Net: A Hybrid Reasoning Framework for Temporal Knowledge Graph.- Improving Code Representation Learning via Multi-view Contrastive Graph Pooling for Abstract Syntax Tree.- Security and Privacy Protection.- Protect applications and data in use in IoT environment using collaborative computing.- Robustness-enhanced assertion generation method based on code mutation and attack defense.- Secure Traffic Data Sharing in UAV-Assisted VANETs.- A Lightweight PUF-Based Group Authentication Scheme for Privacy-Preserving Metering Data Collection in Smart Grid.- A Semi-Supervised Learning Method for Malware Traffic Classification with Raw Bitmaps.- Secure and Private Approximated Coded Distributed Computing Using Elliptic Curve Cryptography.- A Novel Semi-supervised IoT Time Series Anomaly Detection Model using Graph Structure Learning.- Structural Adversarial Attack for Code Representation Models.- An Efficient Authentication and Key Agreement Scheme for CAV Internal Applications.- Processing and Recognition.- SimBPG: A comprehensive similarity evaluation metric for business process graphs.- Probabilistic Inference Based Incremental Graph Index for Similarity Search on Social Networks.- Cloud-Edge-Device Collaborative Image Retrieval and Recognition for Mobile Web.- Contrastive Learning-based Finger-Vein Recognition with Automatic Adversarial Augmentation.- Multi-Dimensional Sequential Contrastive Learning for QoS Prediction.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.