E-Book, Englisch, 104 Seiten, eBook
Reihe: SpringerBriefs in Electrical and Computer Engineering
Gao / Qin Data-Driven Wireless Networks
1. Auflage 2018
ISBN: 978-3-030-00290-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
A Compressive Spectrum Approach
E-Book, Englisch, 104 Seiten, eBook
Reihe: SpringerBriefs in Electrical and Computer Engineering
ISBN: 978-3-030-00290-9
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;7
2;Preface;8
3;Acknowledgment;9
4;Contents;10
5;Acronyms and Nomenclature;13
6;Part I Background;16
6.1;1 Introduction;17
6.1.1;1.1 Motivations and Contributions;18
6.1.1.1;1.1.1 Data-Driven Compressive Spectrum Sensing;19
6.1.1.2;1.1.2 Robust Compressive Spectrum Sensing;19
6.1.1.3;1.1.3 Secure Compressive Spectrum Sensing;20
6.1.2;References;21
6.2;2 Sparse Representation in Wireless Networks;23
6.2.1;2.1 Principles of Standard Compressive Sensing;23
6.2.1.1;2.1.1 Sparse Representation;24
6.2.1.2;2.1.2 Projection;24
6.2.1.3;2.1.3 Signal Reconstruction;26
6.2.2;2.2 Reweighted Compressive Sensing;27
6.2.3;2.3 Distributed Compressive Sensing;28
6.2.4;2.4 Compressive Spectrum Sensing;29
6.2.4.1;2.4.1 Spectrum Sensing Methods;29
6.2.4.2;2.4.2 Spectrum Sensing Model;30
6.2.4.3;2.4.3 Compressive Wideband Spectrum Sensing;31
6.2.4.3.1;2.4.3.1 Signals Arrives at Secondary Users;32
6.2.4.3.2;2.4.3.2 Compressed Measurements Collection;32
6.2.4.3.3;2.4.3.3 Signal Recovery;32
6.2.4.3.4;2.4.3.4 Decision Making;33
6.2.5;2.5 Summary;33
6.2.6;References;33
7;Part II Compressive Spectrum Sensing Algorithms;35
7.1;3 Data-Driven Compressive Spectrum Sensing;36
7.1.1;3.1 Introduction;36
7.1.1.1;3.1.1 Related Work;37
7.1.1.2;3.1.2 Contributions;38
7.1.2;3.2 Data-Driven Compressive Spectrum Sensing Framework;38
7.1.2.1;3.2.1 Iteratively Reweighted Least Square-Based Compressive Sensing;39
7.1.2.2;3.2.2 Non-iteratively Reweighted Least Square-Based Compressive Sensing;41
7.1.2.2.1;3.2.2.1 Convergence Analyses;42
7.1.2.2.2;3.2.2.2 Complexity Analyses;43
7.1.2.3;3.2.3 Proposed Wilkinson's Method-Based DTT Location Probability Calculation Algorithm;44
7.1.2.3.1;3.2.3.1 Maximum Allowable Equivalent Isotropic Radiated Power Calculation;44
7.1.3;3.3 Numerical Analyses;46
7.1.3.1;3.3.1 Numerical Analyses on Simulated Signals and Data;46
7.1.3.2;3.3.2 Numerical Analyses on Real-World Signals and Data;51
7.1.4;3.4 Summary;52
7.1.5;References;53
7.2;4 Robust Compressive Spectrum Sensing;55
7.2.1;4.1 Introduction;55
7.2.1.1;4.1.1 Related Work;55
7.2.1.2;4.1.2 Contributions;56
7.2.2;4.2 Robust Compressive Spectrum Sensing at Single User;57
7.2.2.1;4.2.1 System Model;57
7.2.2.1.1;4.2.1.1 Proposed Channel Division Scheme;57
7.2.2.1.2;4.2.1.2 Proposed Denoised Spectrum Sensing Algorithm;58
7.2.2.2;4.2.2 Computational Complexity and Spectrum Usage Analyses;59
7.2.3;4.3 Numerical Analyses for Single User Case;61
7.2.3.1;4.3.1 Analyses on Simulated Signals;61
7.2.3.2;4.3.2 Analyses on Real-World Signals;64
7.2.4;4.4 Matrix Completion-Based Robust Spectrum Sensing at Cooperative Multiple Users;65
7.2.4.1;4.4.1 System Model;66
7.2.4.1.1;4.4.1.1 Signals Arrive at Secondary Users;67
7.2.4.1.2;4.4.1.2 Incomplete Matrix Construction at Fusion Center;68
7.2.4.1.3;4.4.1.3 Matrix Completion at Fusion Center;68
7.2.4.1.4;4.4.1.4 Decision Making at an Fusion Center;69
7.2.4.2;4.4.2 Denoised Cooperative Spectrum Sensing Algorithm;69
7.2.4.3;4.4.3 Computational Complexity and Performance Analyses;70
7.2.5;4.5 Numerical Analyses for Cooperative Multiple Users Case;70
7.2.5.1;4.5.1 Analyses on Simulated Signals;70
7.2.5.2;4.5.2 Analyses on Real-World Signals;73
7.2.6;4.6 Summary;74
7.2.7;References;75
7.3;5 Secure Compressive Spectrum Sensing;77
7.3.1;5.1 Introduction;77
7.3.1.1;5.1.1 Related Work;78
7.3.1.2;5.1.2 Motivations and Contributions;79
7.3.2;5.2 System Model;80
7.3.2.1;5.2.1 Networks Description;80
7.3.2.2;5.2.2 Signal Processing Model;82
7.3.3;5.3 Malicious User Detection Framework;83
7.3.3.1;5.3.1 Proposed Malicious User Detection Algorithm;84
7.3.3.2;5.3.2 Rank Order Estimation Algorithm;87
7.3.3.3;5.3.3 Malicious User Number Estimation;90
7.3.3.4;5.3.4 Analyses on Minimal Number of Active Secondary Users;91
7.3.4;5.4 Numerical Analyses;92
7.3.4.1;5.4.1 Numerical Results Using Simulated Signals;93
7.3.4.1.1;5.4.1.1 Results of the Proposed Rank Order Estimation;93
7.3.4.1.2;5.4.1.2 Results of the Case with Unknown Number of Malicious Users;93
7.3.4.1.3;5.4.1.3 Results of the Proposed Malicious User Detection;94
7.3.4.2;5.4.2 Numerical Results Using Real-World Signals;97
7.3.5;5.5 Summary;98
7.3.6;References;99
8;Part III Conclusions;101
8.1;6 Conclusions and Future Work;102
8.1.1;6.1 Conclusions;102
8.1.2;6.2 Future Work;103
8.1.3;References;104