Gantmakher / Levinson | Carrier Scattering in Metals and Semiconductors | E-Book | sack.de
E-Book

E-Book, Englisch, Band Volume 19, 478 Seiten, Web PDF

Reihe: Modern Problems in Condensed Matter Sciences

Gantmakher / Levinson Carrier Scattering in Metals and Semiconductors


1. Auflage 2012
ISBN: 978-0-444-59823-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band Volume 19, 478 Seiten, Web PDF

Reihe: Modern Problems in Condensed Matter Sciences

ISBN: 978-0-444-59823-3
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



The transport properties of solids, as well as the many optical phenomena in them are determined by the scattering of current carriers. ``Carrier Scattering in Metals and Semiconductors'' elucidates the state of the art in the research on the scattering mechanisms for current carriers in metals and semiconductors and describes experiments in which these mechanisms are most dramatically manifested.The selection and organization of the material is in a form to prepare the reader to reason independently and to deal just as independently with available theoretical results and experimental data. The subjects dealt with include: - electronic transport theory based on the test-particle and correlation-function concepts; - scattering by phonons, impurities, surfaces, magnons, dislocations, electron-electron scattering and electron temperature; - two-phonon scattering, spin-flip scattering, scattering in degenerate and many-band models.

Gantmakher / Levinson Carrier Scattering in Metals and Semiconductors jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Carrier Scattering in Metals and Semiconductors;4
3;Copyright Page;5
4;Table of Contents;14
5;Preface to the series;8
6;Preface;10
7;Chapter 1. Quasi-Particles in an Ideal Crystal;20
7.1;1.1. Band structure;20
7.2;1.2. Quasi-particles;31
7.3;1.3. Band structure of cubic semiconductors at the center of the Brillouin zone;41
8;Chapter 2. Scattering;54
8.1;2.1. Scattering mechanisms;54
8.2;2.2. Transition probability and the principle of detailed balance;57
8.3;2.3. Scattering cross section;61
8.4;2.4. Relaxation and fluctuation characteristics of a test particle;65
8.5;2.5. The relaxation time approximation. The Boltzmann integral as a current in k-space;72
8.6;2.6. The method of correlators;75
9;Chapter 3. Electron–phonon interaction;82
9.1;3.1. Matrix element of a one-phonon process;82
9.2;3.2. The macrofield and microfield as two causes of scattering;86
9.3;3.3. Screening;89
9.4;3.4. Deformation potential;93
9.5;3.5. Macrofields;98
9.6;3.6. Matrix elements for scattering by long-wavelength phonons;102
9.7;3.7. Scattering by phonons in the pseudopotential method;103
10;Chapter 4. Scattering by long-wavelength phonons in a simple band;106
10.1;4.1. Matrix elements;106
10.2;4.2. Kinematics of scattering;110
10.3;4.3. Relaxation times in a Boltzmann gas;117
10.4;4.4 Relaxation times in a Fermi gas;122
10.5;4.5. Fluctuation–dissipation theorem for quasi-elastic scattering;126
11;Chapter 5. Scattering by phonons in an anisotropic electron band;128
11.1;5.1. Deformation potential scattering in an ellipsoidal valley;128
11.2;5.2. Intervalley scattering;137
11.3;5.3. Intervalley scattering experiments;143
11.4;5.4. Diffusion on the Fermi surface;147
12;Chapter 6. Electron–electron scattering and the electron temperature;151
12.1;6.1. Probability of electron–electron scattering;151
12.2;6.2. Characteristics of test electron scattering by an electron gas;153
12.3;6.3. Effect of electron–electron scattering on the distribution function;162
12.4;6.4. Electron temperature relaxation;169
12.5;6.5. Effect of electron–electron scattering on the oscillating photoresponse;177
12.6;6.6. Electron temperature relaxation time measurement;180
13;Chapter 7. Relaxation characteristics of kinetic effects;187
13.1;7.1. Distribution function perturbation in various types of experiments;187
13.2;7.2. Averaging over energies;194
13.3;7.3. Mobility in semiconductors;198
13.4;7.4. Umklapp collisions;201
13.5;7.5. Relaxation upon mutual scattering of various types of carriers;207
13.6;7.6. Temperature dependences of kinetic effects in metals and semimetals;212
14;Chapter 8. Two-phonon processes;220
14.1;8.1. Probabilities of two-phonon transitions;220
14.2;8.2. Real and virtual transitions. Compound scattering;224
14.3;8.3. Interaction with short-wavelength phonons;231
15;Chapter 9. Scattering by impurities;234
15.1;9.1. Neutral impurities in semiconductors;234
15.2;9.2. Charged impurities in semiconductors;237
15.3;9.3. Partial phase shifts in metals;244
15.4;9.4. Resonant scattering by virtual d-levels;252
16;Chapter 10. Scattering by dislocations;260
16.1;10.1. Scattering diameter;260
16.2;10.2. Experimental investigations;266
17;Chapter 11. Scattering by a crystal surface;272
17.1;11.1. General definitions;272
17.2;11.2. Coherent scattering;273
17.3;11.3. Observation of coherent scattering;281
17.4;11.4. Incoherent scattering;288
18;Chapter 12. Scattering in a degenerate band and in a multiband model;294
18.1;12.1. Matrix elements for quasi-particle scattering by phonons;294
18.2;12.2. Overlap factors;298
18.3;12.3. The isotropic model for hole scattering by phonons in a degenerate band;301
18.4;12.4. Cyclotron resonance of hot holes in germanium;306
18.5;12.5. Scattering by the deformation potential of acoustic phonons in the multiband model;310
18.6;12.6. Interband transitions with LO-phonon emission;316
18.7;12.7. Electron scattering by holes;320
18.8;12.8. Scattering by ionized impurities;322
19;Chapter 13. Spin-flip induced by spin–orbit interaction;325
19.1;13.1. Spin-flip time;325
19.2;13.2. Scattering by nonmagnetic impurities;327
19.3;13.3. Scattering by phonons;335
19.4;13.4. Precession mechanism of spin relaxation;338
19.5;13.5. Spin relaxation in metals – experimental data;340
19.6;13.6. Spin relaxation in semiconductors – experimental data;349
19.7;13.7. Spin-flip at a surface;357
20;Chapter 14. The effect of a magnetic field on scattering;359
20.1;14.1. States in a magnetic field and the description of scattering;359
20.2;14.2. The effect of Larmor motion on relaxation;364
20.3;14.3. Scattering by acoustic phonons in an ultraquantum field – Boltzmann gas;372
20.4;14.4. Scattering by phonons in a quantized Fermi gas;380
20.5;14.5. Resonance inelastic scattering;387
20.6;14.6. Static imperfections;391
20.7;14.7. Electron–electron scattering in the ultraquantum limit;395
20.8;14.8. Spin-flip is a quantizing magnetic field – Kane model;402
21;Chapter 15. Exchange and spin interaction;409
21.1;15.1. Interaction between a conduction electron and a magnetic atom;409
21.2;15.2. Scattering by a spin lattice;412
21.3;15.3. Magnetic impurities;424
21.4;15.4. Skew scattering;428
21.5;15.5. Electron spin relaxation in exchange interaction with holes;436
22;Appendix: Parameters of certain semiconductor materials;445
23;References;448
24;Author index;456
25;Subject index;462
26;Materials index;466
27;Cumulative index;470



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.