E-Book, Englisch, 1166 Seiten
Reihe: Woodhead Publishing Series in Electronic and Optical Materials
Applications of High-Intensity Ultrasound
E-Book, Englisch, 1166 Seiten
Reihe: Woodhead Publishing Series in Electronic and Optical Materials
ISBN: 978-1-78242-036-1
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Power Ultrasonics: Applications of High-intensity Ultrasound;4
3;Copyright;5
4;Contents;6
5;List of contributors;18
6;Woodhead Publishing Series in Electronic and Optical Materials;22
7;Chapter 1: Introduction to power ultrasonics;26
7.1;1.1. Introduction;26
7.2;1.2. The field of ultrasonics;26
7.3;1.3. Power ultrasonics;27
7.4;1.4. Historical notes;28
7.5;1.5. Coverage of this book;29
8;Part One: Fundamentals;32
8.1;Chapter 2: High-intensity ultrasonic waves in fluids: nonlinear propagation and effects;34
8.1.1;2.1. Introduction;34
8.1.2;2.2. Nonlinear phenomena;35
8.1.2.1;2.2.1. Basic equations: acoustic, entropy, and vorticity modes;35
8.1.2.2;2.2.2. Scope of nonlinear acoustics;37
8.1.3;2.3. Nonlinear interactions within the acoustic mode;38
8.1.3.1;2.3.1. Simple waves;38
8.1.3.2;2.3.2. Quadratic approximation;41
8.1.3.3;2.3.3. Nonlinear distortion and shock formation;42
8.1.3.4;2.3.4. Shock structure;44
8.1.3.5;2.3.5. Intense acoustic fields radiated by finite-aperture sources;45
8.1.3.6;2.3.6. Formation of high-intensity ultrasound fields using focusing;47
8.1.4;2.4. Nonlinear interactions between the acoustic and nonacoustic modes;49
8.1.4.1;2.4.1. General remarks;49
8.1.4.2;2.4.2. Acoustic streaming and radiation force;50
8.1.4.3;2.4.3. Medium heating due to absorption of acoustic waves;53
8.1.4.4;2.4.4. Heat release at a shock;55
8.1.5;2.5. Conclusion;57
8.2;Chapter 3: Acoustic cavitation: bubble
dynamics in high-power
ultrasonic fields;62
8.2.1;3.1. Introduction;62
8.2.2;3.2. Cavitation thresholds;63
8.2.2.1;3.2.1. Static tension threshold;63
8.2.2.2;3.2.2. Acoustic cavitation threshold;64
8.2.3;3.3. Single-bubble dynamics;65
8.2.3.1;3.3.1. Bubble models;66
8.2.3.2;3.3.2. Response curves;71
8.2.3.2.1;3.3.2.1. Low driving;71
8.2.3.2.2;3.3.2.2. High driving;73
8.2.3.3;3.3.3. Parameter space diagrams;75
8.2.3.4;3.3.4. Bubble habitat;76
8.2.3.5;3.3.5. Single-bubble dynamics: examples;78
8.2.3.5.1;3.3.5.1. Sound radiation;78
8.2.3.5.2;3.3.5.2. Deformation, splitting, and merging;79
8.2.3.5.3;3.3.5.3. Jet formation;80
8.2.4;3.4. Bubble ensemble dynamics;80
8.2.4.1;3.4.1. Bubble clusters;82
8.2.4.2;3.4.2. Bubble filaments;84
8.2.4.3;3.4.3. Bubble double layers;85
8.2.4.4;3.4.4. Bubble cones;86
8.2.4.5;3.4.5. N-bubble model;87
8.2.4.6;3.4.6. N-bubble simulation examples;88
8.2.5;3.5. Acoustic cavitation noise;90
8.2.5.1;3.5.1. Subharmonics and period doubling;90
8.2.5.2;3.5.2. Synchronization;92
8.2.5.3;3.5.3. Bubble splitting;93
8.2.6;3.6. Sonoluminescence;94
8.2.7;3.7. Conclusions;96
8.3;Chapter 4: High-intensity ultrasonic waves in solids: nonlinear dynamics
and effects;104
8.3.1;4.1. Introduction;104
8.3.2;4.2. Fundamental nonlinear equations;104
8.3.2.1;4.2.1. Constitutive equations and equation of motion;104
8.3.2.2;4.2.2. Approximate analytical solutions;107
8.3.2.2.1;4.2.2.1. Applications;109
8.3.2.3;4.2.3. Isotropic solids and wave number modulation;111
8.3.2.3.1;4.2.3.1. Applications;112
8.3.3;4.3. Nonlinear effects in progressive and stationary waves;113
8.3.3.1;4.3.1. Harmonic balance in progressive waves: dispersion and attenuation;113
8.3.3.2;4.3.2. Frequency mixing;115
8.3.3.2.1;4.3.2.1. Applications;116
8.3.3.3;4.3.3. Stationary waves: nonlinear sources;117
8.3.3.3.1;4.3.3.1. Applications;121
8.3.4;4.4. Conclusions;122
8.4;Chapter 5: Piezoelectric ceramic materials for power ultrasonic transducers;126
8.4.1;5.1. Introduction;126
8.4.2;5.2. Fundamentals of ferro-piezoelectric ceramics;126
8.4.2.1;5.2.1. From the ferroelectric single-crystal to the ceramic;126
8.4.2.2;5.2.2. Ferroelectric hysteresis and domains;129
8.4.2.3;5.2.3. The poling process;130
8.4.2.4;5.2.4. Multifunctional ferro-piezoelectric ceramics;131
8.4.3;5.3. Characterization methods of ceramics from piezoelectric resonances;132
8.4.3.1;5.3.1. IEEE and European standard methods;133
8.4.3.2;5.3.2. Alternative numerical methods, a review;135
8.4.3.3;5.3.3. The iterative automatic method;136
8.4.4;5.4. Applications of the iterative automatic method in the characterization of ceramics;137
8.4.4.1;5.4.1. Thin disk resonator, thickness poled;138
8.4.4.2;5.4.2. Shear plate resonator, thickness poled;140
8.4.4.3;5.4.3. Long bar resonator, length poled;140
8.4.4.4;5.4.4. Using finite element analysis to check the validity of characterization;140
8.4.5;5.5. Lead-free piezoceramics for environmental protection;142
8.4.5.1;5.5.1. Aurivillius-type structure ceramics;142
8.4.5.2;5.5.2. Alkaline niobates;143
8.4.5.3;5.5.3. Bismuth-sodium titanates;143
8.4.6;5.6. Future trends;144
8.5;Chapter 6: Power ultrasonic transducers: principles and design;152
8.5.1;6.1. Introduction;152
8.5.2;6.2. Ultrasonic vibrations: mechanical oscillator;153
8.5.2.1;6.2.1. Summary of vibration results;153
8.5.2.1.1;6.2.1.1. Free vibration of an undamped oscillator;154
8.5.2.1.2;6.2.1.2. Free vibration of a damped oscillator;155
8.5.2.1.3;6.2.1.3. Forced vibration of an undamped oscillator;155
8.5.2.1.4;6.2.1.4. Forced vibration of a damped oscillator;157
8.5.2.1.5;6.2.1.5. A note on transient response;157
8.5.2.2;6.2.2. Equivalent circuit, impedance;158
8.5.2.3;6.2.3. Displacement/velocity forcing, parallel equivalent circuit;160
8.5.3;6.3. Ultrasonic vibrations: longitudinal vibrations;161
8.5.3.1;6.3.1. Governing theory, natural frequencies;161
8.5.3.2;6.3.2. Forced vibrations of a rod;164
8.5.3.3;6.3.3. Three-dimensional effects;166
8.5.3.4;6.3.4. Ultrasonic horns;167
8.5.3.5;6.3.5. Equivalent circuit;168
8.5.3.6;6.3.6. Summary of basic vibrations;169
8.5.4;6.4. Piezoelectric materials;169
8.5.5;6.5. The power ultrasonic transducer;171
8.5.5.1;6.5.1. Basic transducer;171
8.5.5.2;6.5.2. Practical design considerations;171
8.5.5.3;6.5.3. Other configurations;173
8.5.6;6.6. Transducer characterization and control;174
8.5.6.1;6.6.1. Transducer impedance: equivalent circuit;174
8.5.6.2;6.6.2. Ultrasonic transducer systems;175
8.5.6.2.1;6.6.2.1. Impedance matching;176
8.5.6.2.2;6.6.2.2. Frequency control;176
8.5.6.2.3;6.6.2.3. Amplitude control;177
8.5.6.3;6.6.3. Power;178
8.5.7;6.7. Modeling transducer behavior;179
8.5.8;6.8. Transducer development;181
8.5.9;6.9. Future trends;182
8.5.10;6.10. Sources of further information and advice;182
8.6;Chapter 7: Power ultrasonic transducers with vibrating plate radiators*;184
8.6.1;7.1. Introduction;184
8.6.2;7.2. Structure of transducers: basic design;184
8.6.3;7.3. Finite element modeling;187
8.6.4;7.4. Controlling nonlinear vibration behavior;190
8.6.4.1;7.4.1. Nonlinear piezoelectric responses;191
8.6.4.2;7.4.2. Modal interactions;194
8.6.5;7.5. Fatigue limitations of transducers;199
8.6.6;7.6. Characteristics of the different types of plate transducers;201
8.6.6.1;7.6.1. Stepped-plate transducers;201
8.6.6.2;7.6.2. Grooved-plate transducers;205
8.6.6.3;7.6.3. Stepped-grooved plate transducers;208
8.6.6.4;7.6.4. Flat plate transducers with reflectors;208
8.6.7;7.7. Evaluating transducers in power operation: electrical, vibrational, acoustic, and thermal characteristics;211
8.6.8;7.8. Conclusions and future trends;216
8.7;Chapter 8: Measurement techniques in power ultrasonics;220
8.7.1;8.1. Introduction;220
8.7.2;8.2. Characterizing the source;222
8.7.2.1;8.2.1. Electrically;222
8.7.2.2;8.2.2. Optically: vibrometry and microscopy;222
8.7.3;8.3. Characterizing the generated ultrasound field;223
8.7.3.1;8.3.1. Acoustic power: bulk assessment;223
8.7.3.2;8.3.2. Acoustic pressure and intensities: local assessment;224
8.7.4;8.4. Characterizing the resultant acoustic cavitation;225
8.7.4.1;8.4.1. Scoping the challenge;225
8.7.4.2;8.4.2. Acoustical methods;226
8.7.4.3;8.4.3. Chemical methods;230
8.7.4.4;8.4.4. Optical methods;231
8.7.4.5;8.4.5. Mechanical methods;232
8.7.5;8.5. Case studies: characterizing two cavitating systems;233
8.7.6;8.6. Conclusions;238
8.8;Chapter 9: Modeling of power ultrasonic transducers;244
8.8.1;9.1. Introduction;244
8.8.2;9.2. Transduction and elastic wave propagation in solids;244
8.8.2.1;9.2.1. Physical equations and boundary conditions;244
8.8.2.2;9.2.2. Finite element method (FEM);246
8.8.2.2.1;9.2.2.1. Variational formulation;246
8.8.2.2.2;9.2.2.2. Space discretization;247
8.8.2.2.3;9.2.2.3. Problem types;249
8.8.2.2.3.1;Three types of analyses are considered;249
8.8.2.3;9.2.3. Illustrative examples;250
8.8.2.3.1;9.2.3.1. Length expander transducer;250
8.8.2.3.2;9.2.3.2. Ultrasonic motor;250
8.8.3;9.3. Acoustic waves in fluids and fluid-structure coupling;253
8.8.3.1;9.3.1. Physical equations and boundary conditions;253
8.8.3.2;9.3.2. FEM;253
8.8.4;9.4. The unbounded problem: far-field radiation of acoustic waves;255
8.8.4.1;9.4.1. Methods based on exact nonlocal boundary conditions;255
8.8.4.1.1;9.4.1.1. Exact nonlocal boundary conditions;255
8.8.4.1.2;9.4.1.2. Boundary element method (BEM);256
8.8.4.1.3;9.4.1.3. Dirichlet-to-Neuman (DtN) method;258
8.8.4.2;9.4.2. Methods based on approximate boundary conditions;259
8.8.4.2.1;9.4.2.1. Acoustic dampers;259
8.8.4.2.2;9.4.2.2. Perfectly matched layers (PMLs);260
8.8.4.3;9.4.3. Illustrative example: airborne stepped plate transducer;260
8.9;Chapter 10: Modeling energy losses in power ultrasound transducers;266
8.9.1;10.1. Introduction;266
8.9.2;10.2. Modeling linear and nonlinear behavior;267
8.9.2.1;10.2.1. Linear case: coupled equations;267
8.9.2.2;10.2.2. Nonlinear case;270
8.9.3;10.3. Experimental validation and simulation testing;273
8.9.4;10.4. Assessing model performance;277
8.9.5;10.5. Conclusions;278
9;Part Two: Welding, metal forming, and machining applications;282
9.1;Chapter 11: Ultrasonic welding of metals;284
9.1.1;11.1. Introduction;284
9.1.2;11.2. Principles of ultrasonic metal welding;285
9.1.2.1;11.2.1. Ultrasonic frequency;291
9.1.2.2;11.2.2. Vibration amplitude;291
9.1.2.3;11.2.3. Static force;292
9.1.2.4;11.2.4. Power, energy, and time;292
9.1.2.5;11.2.5. Materials;293
9.1.2.6;11.2.6. Part geometry;294
9.1.2.7;11.2.7. Tooling;294
9.1.3;11.3. Ultrasonic welding equipment;294
9.1.4;11.4. Mechanics and metallurgy of the ultrasonic weld;297
9.1.5;11.5. Applications of ultrasonic welding;309
9.1.6;11.6. Process advantages and disadvantages;311
9.1.7;Advantages;311
9.1.8;Disadvantages;312
9.1.8.1;11.6.1. Solid-state welding process;312
9.1.8.2;11.6.2. Aluminum, copper, other materials;312
9.1.8.3;11.6.3. Dissimilar materials;312
9.1.8.4;11.6.4. Thin-thick combinations;313
9.1.8.5;11.6.5. Oxides and contaminants;313
9.1.8.6;11.6.6. Fast, easily automated;313
9.1.8.7;11.6.7. Filler metals and gases;314
9.1.8.8;11.6.8. Low energy requirements;314
9.1.8.9;11.6.9. Restricted to lap joints;314
9.1.8.10;11.6.10. Limited in joint thickness and material hardness;314
9.1.8.11;11.6.11. Material-part deformation;314
9.1.8.12;11.6.12. Noise;315
9.1.8.13;11.6.13. Process unfamiliarity;315
9.1.9;11.7. Future trends;315
9.1.9.1;11.7.1. More powerful welding systems;315
9.1.9.2;11.7.2. Process controls and systems;316
9.1.9.3;11.7.3. Mechanism of ultrasonic welding;316
9.1.9.4;11.7.4. Joint types;316
9.1.10;11.8. Sources of further information and advice;317
9.2;Chapter 12: Ultrasonic welding of plastics and polymeric composites;320
9.2.1;12.1. Introduction;320
9.2.2;12.2. Theory of the ultrasonic welding process;320
9.2.2.1;12.2.1. Viscoelastic heating of polymers;322
9.2.2.2;12.2.2. Near-field ultrasonic welding;324
9.2.2.3;12.2.3. Far-field ultrasonic welding;324
9.2.3;12.3. Description of plunge and continuous welding processes;326
9.2.3.1;12.3.1. Plunge welding;326
9.2.3.2;12.3.2. Continuous and scan welding;327
9.2.3.3;12.3.3. Process control;329
9.2.4;12.4. Ultrasonic welding equipment;329
9.2.4.1;12.4.1. Power supply and controller;330
9.2.4.2;12.4.2. Ultrasonic stack;330
9.2.4.3;12.4.3. Actuator;332
9.2.4.4;12.4.4. Fixture;333
9.2.5;12.5. Joint and part design;333
9.2.6;12.6. Material weldability;335
9.3;Chapter 13: Power ultrasonics for additive manufacturing and consolidating of materials;338
9.3.1;13.1. Introduction;338
9.3.1.1;13.1.1. Steps necessary for moving from computer data to part via additive manufacturing (AM);338
9.3.1.1.1;13.1.1.1. Step 1: Computer-aided design (CAD) 3-D model creation;338
9.3.1.1.2;13.1.1.2. Step 2: .stl file conversion;339
9.3.1.1.3;13.1.1.3. Step 3: Build setup of specific AM machine;340
9.3.1.1.4;13.1.1.4. Step 4: Manufacture of the component via specific AM process;340
9.3.1.1.5;13.1.1.5. Step 5: Postprocessing of components;340
9.3.1.2;13.1.2. Additive manufacturing process categories;341
9.3.2;13.2. Ultrasonic additive manufacturing;342
9.3.2.1;13.2.1. System components;343
9.3.2.1.1;13.2.1.1. Benefits of ultrasonic welding;344
9.3.2.1.2;13.2.1.2. Power supply;344
9.3.2.1.3;13.2.1.3. Transducer;345
9.3.2.1.4;13.2.1.4. Booster;345
9.3.2.1.5;13.2.1.5. Sonotrode;345
9.3.2.1.6;13.2.1.6. Anvil;345
9.3.2.1.7;13.2.1.7. System setup;346
9.3.2.2;13.2.2. Process operation;346
9.3.2.2.1;13.2.2.1. Weld speed;347
9.3.2.2.2;13.2.2.2. Sonotrode oscillation amplitude;347
9.3.2.2.3;13.2.2.3. Weld pressure;348
9.3.2.2.4;13.2.2.4. Anvil temperature;348
9.3.2.2.5;13.2.2.5. Sonotrode topology;348
9.3.2.3;13.2.3. Development of a higher power system;349
9.3.3;13.3. Applications of ultrasonic additive manufacturing;351
9.3.3.1;13.3.1. Complicated geometry;351
9.3.3.2;13.3.2. Dissimilar material bonding;351
9.3.3.3;13.3.3. Object embedment;353
9.3.4;13.4. Future trends;356
9.3.5;13.5. Conclusion;357
9.4;Chapter 14: Ultrasonic metal forming: Materials;362
9.4.1;14.1. Introduction;362
9.4.2;14.2. Microstructure effects;363
9.4.3;14.3. Macroscopic behavior;364
9.4.3.1;14.3.1. Early developments;365
9.4.3.2;14.3.2. The 1970s and 1980s;372
9.4.3.3;14.3.3. The 1990s to the present;374
9.4.4;14.4. Surface friction;381
9.4.4.1;14.4.1. Early developments;382
9.4.4.2;14.4.2. The 1980s to the present;388
9.4.5;14.5. Future trends;394
9.4.6;14.6. Sources of further information and advice;394
9.5;Chapter 15: Ultrasonic metal forming: Processing;402
9.5.1;15.1. Introduction;402
9.5.2;15.2. Wire and tube drawing;402
9.5.2.1;15.2.1. Early developments;403
9.5.2.2;15.2.2. The 1970s and 1980s;409
9.5.2.3;15.2.3. The 1990s to the present;411
9.5.3;15.3. Deep drawing and bending;418
9.5.3.1;15.3.1. Deep drawing;418
9.5.3.1.1;15.3.1.1. The early years: 1960s and 1970s;418
9.5.3.1.2;15.3.1.2. The 1980s to the present;422
9.5.3.2;15.3.2. Bending;429
9.5.4;15.4. Forging and extrusion;429
9.5.4.1;15.4.1. Early developments;429
9.5.4.2;15.4.2. Recent developments;434
9.5.5;15.5. Ultrasonic rolling;439
9.5.6;15.6. Other forming processes;441
9.5.6.1;15.6.1. Shearing and blanking;442
9.5.6.2;15.6.2. Tube expansion;443
9.5.6.3;15.6.3. Wire flattening;443
9.5.6.4;15.6.4. Riveting;444
9.5.6.5;15.6.5. Surface treatment;445
9.5.6.6;15.6.6. Microforming;449
9.5.6.7;15.6.7. Compaction;451
9.5.7;15.7. Future trends;455
9.5.8;15.8. Sources of further information and advice;456
9.6;Chapter 16: Using power ultrasonics in machine tools;464
9.6.1;16.1. Introduction;464
9.6.2;16.2. Historical and technical review;466
9.6.2.1;16.2.1. Surface grinding;466
9.6.2.2;16.2.2. Turning;468
9.6.2.3;16.2.3. Reaming;471
9.6.2.4;16.2.4. Milling;471
9.6.2.5;16.2.5. Drilling;471
9.6.2.6;16.2.6. Machining/forming;473
9.6.3;16.3. Ultrasonic machine tool processes: ultrasonic turning;476
9.6.3.1;16.3.1. Ultrasonic cutting modes;477
9.6.3.2;16.3.2. Mechanism of ultrasonic turning;478
9.6.3.3;16.3.3. Systems hardware;481
9.6.3.4;16.3.4. Ultrasonic turning data;482
9.6.3.4.1;16.3.4.1. Turning speeds and machining practice;483
9.6.3.4.2;16.3.4.2. Surface quality;484
9.6.3.4.3;16.3.4.3. DOC and feed rate;487
9.6.3.4.4;16.3.4.4. Tool wear;487
9.6.3.4.5;16.3.4.5. Chip morphology;488
9.6.3.4.6;16.3.4.6. Coolants;488
9.6.3.4.7;16.3.4.7. Cutting forces;492
9.6.3.4.8;16.3.4.8. Elliptical vibration cutting;495
9.6.4;16.4. Ultrasonic drilling and milling;497
9.6.4.1;16.4.1. Drilling;497
9.6.4.2;16.4.2. Milling;507
9.6.5;16.5. Ultrasonic grinding;513
9.6.6;16.6. Allied ultrasonic machining processes;517
9.6.6.1;16.6.1. Reaming, honing, lapping;517
9.6.6.2;16.6.2. Tapping;518
9.6.6.3;16.6.3. Other;519
9.6.7;16.7. Ultrasonic machine tools for production;520
9.6.7.1;16.7.1. Basic drill press;520
9.6.7.2;16.7.2. Heavy-duty portable drill;520
9.6.7.3;16.7.3. Ultrasonic tool attachments and module;523
9.6.7.4;16.7.4. Machining center adaptation;525
9.6.8;16.8. Future trends;526
9.6.9;16.9. Sources of further information and advice;527
10;Part Three: Engineering and medical applications;534
10.1;Chapter 17: Ultrasonic motors;536
10.1.1;17.1. Introduction;536
10.1.2;17.2. Traveling-wave ultrasonic motors;537
10.1.2.1;17.2.1. Principle of the traveling-wave linear ultrasonic motor;537
10.1.2.2;17.2.2. Variations of the traveling-wave linear ultrasonic motor;538
10.1.2.3;17.2.3. Traveling-wave rotary motors: ring or disk shape;539
10.1.2.4;17.2.4. Traveling-wave rotary motors: bar shape;541
10.1.3;17.3. Hybrid transducer ultrasonic motors;543
10.1.3.1;17.3.1. Hybrid transducer linear motors;543
10.1.3.2;17.3.2. High-power hybrid transducer linear motors;548
10.1.3.3;17.3.3. Hybrid transducer rotary motors;553
10.1.4;17.4. Performance of ultrasonic motors and driver circuits;558
10.1.4.1;17.4.1. Equivalent circuit modeling;559
10.1.4.2;17.4.2. Discussion of motor performance;561
10.1.4.3;17.4.3. Driving circuits for ultrasonic motors;563
10.1.5;17.5. Conclusion and future trends;564
10.2;Chapter 18: Power ultrasound for the production of nanomaterials;568
10.2.1;18.1. Introduction;568
10.2.2;18.2. Ultrasound synthesis of metallic nanoparticles;570
10.2.3;18.3. Ultrasound synthesis of metal oxide nanoparticles;573
10.2.4;18.4. Ultrasound synthesis of chalcogenide nanoparticles;581
10.2.5;18.5. Ultrasound synthesis of metal halide nanoparticles;582
10.2.5.1;18.5.1. Ultrasound synthesis of water-insoluble metal halides;582
10.2.5.2;18.5.2. Ultrasound synthesis of water-soluble metal halides;584
10.2.6;18.6. Using ultrasonic waves in the synthesis of graphene, graphene oxide, and other nanomaterials;584
10.2.6.1;18.6.1. Ultrasound synthesis of miscellaneous nanoparticles;586
10.2.7;18.7. The use of ultrasound for the deposition of nanoparticles on substrates;586
10.2.8;18.8. Ultrasound synthesis of micro- and nanospheres;589
10.2.9;18.9. Conclusions and future trends;594
10.3;Chapter 19: Ultrasonic cleaning and washing of surfaces;602
10.3.1;19.1. Introduction;602
10.3.2;19.2. The use of ultrasound in cleaning;603
10.3.3;19.3. Ultrasonic cleaning technology;604
10.3.3.1;19.3.1. Transducers;604
10.3.3.2;19.3.2. Generators;606
10.3.3.3;19.3.3. Factors driving development;606
10.3.4;19.4. Mechanism of ultrasonic cleaning;606
10.3.4.1;19.4.1. Cavitation;607
10.3.4.2;19.4.2. Cleaning;607
10.3.5;19.5. Ultrasonic cleaning process variables;608
10.3.5.1;19.5.1. Size and number of cavitation bubbles;608
10.3.5.2;19.5.2. The effect of temperature and chemistry on liquid properties;608
10.3.5.3;19.5.3. Viscosity;609
10.3.5.4;19.5.4. Surface tension;609
10.3.5.5;19.5.5. Dissolved gas and its diffusion rate;609
10.3.5.6;19.5.6. Vapor pressure;610
10.3.5.7;19.5.7. Ultrasonic power;610
10.3.5.8;19.5.8. Ultrasonic frequency;611
10.3.6;19.6. The role of chemical additives and temperature;611
10.3.7;19.7. Achieving optimum ultrasonic cleaning performance;612
10.3.7.1;19.7.1. Degassing;612
10.3.7.2;19.7.2. Ultrasonic power;612
10.3.7.3;19.7.3. Part exposure;613
10.3.7.4;19.7.4. Liquid agitation;614
10.3.8;19.8. Evaluating ultrasonic cleaning performance;614
10.3.8.1;19.8.1. Chlorine release test;615
10.3.8.2;19.8.2. Standardized soil test;615
10.3.8.3;19.8.3. Aluminum foil test;616
10.3.8.4;19.8.4. Ceramic ring test;617
10.3.8.5;19.8.5. Hydrophones;618
10.3.8.6;19.8.6. Lead erosion;619
10.3.8.7;19.8.7. Calorimetric test;619
10.3.8.8;19.8.8. Test validity;619
10.3.9;19.9. Advances in technology;620
10.3.9.1;19.9.1. Ultrasonic transducers;620
10.3.9.2;19.9.2. Ultrasonic generators;621
10.3.9.2.1;19.9.2.1. Sweep;621
10.3.9.2.2;19.9.2.2. Higher frequency;622
10.3.10;19.10. Damage mechanisms;623
10.3.10.1;19.10.1. Cavitation erosion or ``burning´´;623
10.3.10.2;19.10.2. Mechanical resonance;623
10.3.11;19.11. Megasonics;624
10.3.12;19.12. Future trends;626
10.3.12.1;19.12.1. Higher frequency;626
10.3.12.2;19.12.2. Cost;626
10.3.12.3;19.12.3. Future applications;626
10.3.13;19.13. Sources of further information and advice;627
10.3.14;Appendix:
ultrasonic washing of textiles (contributed by Juan A. Gallego-Juárez);627
10.4;Chapter 20: Ultrasonic degassing of liquids;636
10.4.1;20.1. Introduction;636
10.4.2;20.2. Fundamentals of ultrasonic degassing;638
10.4.2.1;20.2.1. General mechanisms;638
10.4.2.2;20.2.2. Cavitation and degassing nuclei;639
10.4.3;20.3. Mechanism of ultrasonic degassing in melts;642
10.4.4;20.4. Main process parameters in ultrasonic degassing;645
10.4.4.1;20.4.1. Ultrasonic energy;648
10.4.4.2;20.4.2. Melt temperature;648
10.4.4.3;20.4.3. Inclusions;648
10.4.4.4;20.4.4. Alloy composition;649
10.4.4.5;20.4.5. Treatment time and volume;649
10.4.5;20.5. Industrial implementation of ultrasonic degassing;649
10.5;Chapter 21: Ultrasonic surgical devices and procedures;658
10.5.1;21.1. Introduction;658
10.5.2;21.2. Surgical device requirements and goals;658
10.5.2.1;21.2.1. Historical overview;658
10.5.2.2;21.2.2. Target tissues;660
10.5.2.2.1;21.2.2.1. Soft tissues;660
10.5.2.2.2;21.2.2.2. Hard tissues;660
10.5.2.3;21.2.3. Surgical requirements;661
10.5.3;21.3. General device design;661
10.5.3.1;21.3.1. Resonance as the fundamental design concept;661
10.5.3.2;21.3.2. Key components: generator, transducer, horn, probe, and wire;662
10.5.3.2.1;21.3.2.1. Generator;662
10.5.3.2.2;21.3.2.2. Transducer;663
10.5.3.2.3;21.3.2.3. Coupler/horn;663
10.5.3.2.4;21.3.2.4. Transmission element/probe/wire;664
10.5.3.2.5;21.3.2.5. End effector;664
10.5.3.3;21.3.3. Modes of operation;665
10.5.3.3.1;21.3.3.1. Longitudinal;665
10.5.3.3.2;21.3.3.2. Torsional;666
10.5.3.3.3;21.3.3.3. Lateral and ellipsoidal;666
10.5.3.3.4;21.3.3.4. Compound motions;667
10.5.3.3.5;21.3.3.5. Wire transverse;667
10.5.3.3.6;21.3.3.6. Unwanted modes;667
10.5.3.4;21.3.4. End effectors;668
10.5.3.4.1;21.3.4.1. Solid end effectors;668
10.5.3.4.2;21.3.4.2. Hollow end effectors;668
10.5.3.4.3;21.3.4.3. Wires;668
10.5.3.4.4;21.3.4.4. Bends and shapes;669
10.5.3.5;21.3.5. Ancillary concerns;669
10.5.3.5.1;21.3.5.1. Irrigation and aspiration;669
10.5.3.5.2;21.3.5.2. Physician interaction;670
10.5.4;21.4. Mechanisms of action;670
10.5.4.1;21.4.1. Cavitation;670
10.5.4.1.1;21.4.1.1. Cavitation nuclei and rectified diffusion;670
10.5.4.1.2;21.4.1.2. Transient cavitation;671
10.5.4.1.3;21.4.1.3. Stable cavitation;672
10.5.4.2;21.4.2. Direct impact;672
10.5.4.3;21.4.3. Thermal;673
10.5.4.4;21.4.4. Acoustic energy, acoustic streaming, and radiation force;673
10.5.4.4.1;21.4.4.1. Acoustic pressure and power;673
10.5.4.4.2;21.4.4.2. Acoustic radiation force and streaming;674
10.5.4.5;21.4.5. Nebulization;674
10.5.5;21.5. Device types;675
10.5.5.1;21.5.1. Aspiration devices: open surgery;675
10.5.5.1.1;21.5.1.1. The CUSA and derivative devices;675
10.5.5.1.2;21.5.1.2. Contact debridement;675
10.5.5.1.3;21.5.1.3. Phacoemulsification devices;675
10.5.5.1.4;21.5.1.4. Bone cutting;677
10.5.5.2;21.5.2. Cutting/coagulation devices: the Harmonic Scalpel and derivative devices;677
10.5.5.3;21.5.3. Remote disruptive devices;677
10.5.5.4;21.5.4. Tissue-preserving devices;678
10.5.5.5;21.5.5. Externally applied devices;678
10.5.5.6;21.5.6. Focused ultrasound devices: high-intensity focused ultrasound;678
10.5.6;21.6. Medical device regulations;679
10.5.6.1;21.6.1. General requirements;679
10.5.6.2;21.6.2. IEC Standards pertaining to ultrasonic surgical devices;679
10.5.7;21.7. Future trends;679
10.5.8;21.8. Sources of further information and advice;680
10.6;Chapter 22: High-intensity focused ultrasound for medical therapy;686
10.6.1;22.1. Introduction;686
10.6.2;22.2. Ultrasound interaction with tissue;687
10.6.2.1;22.2.1. Thermal interaction;687
10.6.2.1.1;22.2.1.1. Energy absorption;687
10.6.2.1.2;22.2.1.2. Thermal ablation;688
10.6.2.1.3;22.2.1.3. Apoptosis;690
10.6.2.1.4;22.2.1.4. Hyperthermia;690
10.6.2.2;22.2.2. Cavitational interaction;691
10.6.2.2.1;22.2.2.1. Mechanism;691
10.6.2.2.2;22.2.2.2. Tissue disintegration and fragmentation;693
10.6.2.2.3;22.2.2.3. Enhancement of drug treatments;693
10.6.2.3;22.2.3. Radiation force;694
10.6.3;22.3. Therapy devices;694
10.6.3.1;22.3.1. External devices;695
10.6.3.2;22.3.2. Endocavity devices;699
10.6.3.3;22.3.3. Interstitial and intraoperative devices;701
10.6.4;22.4. Imaging guidance;701
10.6.4.1;22.4.1. Ultrasound;701
10.6.4.2;22.4.2. Magnetic resonance imaging;703
10.6.4.3;22.4.3. Other imaging modalities;705
10.6.5;22.5. Clinical experience;705
10.6.5.1;22.5.1. Prostate;705
10.6.5.2;22.5.2. Liver;706
10.6.5.3;22.5.3. Breast;706
10.6.5.4;22.5.4. Uterine fibroids;707
10.6.5.5;22.5.5. Thyroid;708
10.6.5.6;22.5.6. Bone;709
10.6.5.7;22.5.7. Brain;709
10.6.5.8;22.5.8. Stroke;710
10.6.6;22.6. Future trends;710
10.7;Chapter 23: Ultrasonic cutting for surgical applications;720
10.7.1;23.1. Introduction: the origins of ultrasonic cutting for surgical devices;720
10.7.2;23.2. Developments in ultrasound for soft-tissue dissection;722
10.7.3;23.3. Developments in ultrasound for bone cutting and other surgical applications;725
10.7.4;23.4. Cutting mechanisms in soft tissue;726
10.7.5;23.5. Ultrasonic dissection of mineralized tissue;727
10.7.6;23.6. Factors affecting device performance;729
10.7.6.1;23.6.1. Temperature control;729
10.7.6.2;23.6.2. Multiple-mode devices;730
10.7.6.3;23.6.3. Nonlinear and undesirable behavior;731
10.7.7;23.7. Device characterization;733
10.7.7.1;23.7.1. Modal analysis;733
10.7.7.2;23.7.2. Harmonic characterization;735
10.7.8;23.8. Orthopedic, orthodontic, and maxillofacial procedures;737
10.7.8.1;23.8.1. Selective cutting;737
10.7.8.2;23.8.2. A clinical procedure using ultrasonic devices;738
10.7.9;23.9. Current and future trends;740
10.7.9.1;23.9.1. Transduction materials;740
10.7.9.2;23.9.2. Transducer design;740
10.7.9.3;23.9.3. Planar transducers;740
10.7.9.4;23.9.4. Flextensional transducers;741
11;Part Four: Food technology and pharmaceutical applications;748
11.1;Chapter 24: Design and scale-up of sonochemical reactors for food processing and other applications;750
11.1.1;24.1. Introduction;750
11.1.2;24.2. Modeling of cavitational reactors;751
11.1.3;24.3. Understanding cavitational activity;753
11.1.4;24.4. Types of reactors;758
11.1.4.1;24.4.1. Probe systems;759
11.1.4.2;24.4.2. Ultrasonic baths;759
11.1.4.3;24.4.3. Flow systems;760
11.1.5;24.5. Developments in reactor design;762
11.1.6;24.6. Selecting operating parameters;771
11.1.6.1;24.6.1. Selection of frequency of irradiation;772
11.1.6.2;24.6.2. Selection of power dissipation levels;772
11.1.6.3;24.6.3. Liquid phase physicochemical properties;774
11.1.6.4;24.6.4. Geometrical design of the reactor;774
11.1.7;24.7. Reactor choice, scale-up, and optimization;775
11.1.8;24.8. Future trends;776
11.1.9;24.9. Conclusions;777
11.2;Chapter 25: Ultrasonic mixing, homogenization, and emulsification in food processing and other applications;782
11.2.1;25.1. Introduction;782
11.2.2;25.2. Cavitation and acoustic streaming;783
11.2.2.1;25.2.1. Acoustic cavitation;783
11.2.2.2;25.2.2. Acoustic streaming;784
11.2.2.3;25.2.3. Conclusion;785
11.2.3;25.3. Mixing;785
11.2.3.1;25.3.1. Macromixing;785
11.2.3.2;25.3.2. Micromixing;786
11.2.4;25.4. Particle and aggregate dispersion and disruption;789
11.2.4.1;25.4.1. Dispersion or deagglomeration;789
11.2.4.2;25.4.2. Disruption and breakage;791
11.2.5;25.5. Solid and liquid dissolution;794
11.2.6;25.6. Homogenization;800
11.2.7;25.7. Emulsification;803
11.2.7.1;25.7.1. Specific aspects of US emulsification;804
11.2.7.2;25.7.2. Main features of US emulsification;805
11.2.8;25.8. Conclusions and future trends;810
11.3;Chapter 26: Ultrasonic defoaming and debubbling in food processing and other applications;818
11.3.1;26.1. Introduction;818
11.3.2;26.2. Foams;819
11.3.2.1;26.2.1. Types and characteristics;819
11.3.2.2;26.2.2. Effects of foam in processes;820
11.3.3;26.3. Conventional methods for foam control;821
11.3.4;26.4. Ultrasonic defoaming;822
11.3.5;26.5. Mechanisms of ultrasonic defoaming;824
11.3.6;26.6. Ultrasonic defoamers;828
11.3.7;26.7. Using ultrasound to remove bubbles in coating layers;836
11.3.8;26.8. Conclusions and future trends;837
11.4;Chapter 27: Power ultrasonics for food processing;840
11.4.1;27.1. Introduction;840
11.4.2;27.2. Ultrasonically assisted extraction (UAE);841
11.4.2.1;27.2.1. Essential oils and aromas;842
11.4.2.2;27.2.2. Antioxidants and colors;845
11.4.3;27.3. Emulsification;846
11.4.4;27.4. Viscosity modification;849
11.4.5;27.5. Processing dairy proteins;851
11.4.6;27.6. Sonocrystallization;854
11.4.7;27.7. Fat separation;859
11.4.8;27.8. Other applications: sterilization, pasteurization, drying, brining, and marinating;860
11.4.8.1;27.8.1. Drying;862
11.4.8.2;27.8.2. Brining and marinating;862
11.4.9;27.9. Hazard analysis critical control point (HACCP) for ultrasound in food-processing operations;862
11.4.10;27.10. Conclusions and future trends;863
11.5;Chapter 28: Crystallization and freezing processes assisted by power ultrasound;870
11.5.1;28.1. Introduction;870
11.5.2;28.2. Fundamentals of crystallization;871
11.5.2.1;28.2.1. Saturation and supersaturation in solutions and melts;871
11.5.2.1.1;28.2.1.1. Saturation;871
11.5.2.1.2;28.2.1.2. Supersaturation;872
11.5.2.2;28.2.2. Nucleation;874
11.5.2.2.1;28.2.2.1. Primary nucleation;874
11.5.2.3;28.2.3. Growth;876
11.5.2.4;28.2.4. Induction time and metastable zone width;877
11.5.3;28.3. Impact of ultrasound on solute crystallization;877
11.5.3.1;28.3.1. Induction time;878
11.5.3.2;28.3.2. Polymorphism and crystallinity;879
11.5.3.3;28.3.3. Morphology and size distribution;880
11.5.3.4;28.3.4. Nucleation and growth rates;880
11.5.3.5;28.3.5. Agglomeration;881
11.5.4;28.4. Effect of ultrasound on ice crystallization (freezing);882
11.5.5;28.5. Solute nucleation mechanisms induced by ultrasound;885
11.5.5.1;28.5.1. Thermodynamic (temperature and pressure) effect;886
11.5.5.2;28.5.2. Kinetic effect;887
11.5.5.2.1;28.5.2.1. Effect on the diffusion coefficient;887
11.5.5.2.2;28.5.2.2. Segregation;888
11.5.5.3;28.5.3. Chemical effect;889
11.5.5.4;28.5.4. Heterogeneous nucleation;890
11.5.6;28.6. Crystal growth and breakage mechanisms induced by ultrasound;890
11.5.7;28.7. Ice nucleation mechanisms induced by ultrasound;891
11.5.7.1;28.7.1. A general survey;891
11.5.7.2;28.7.2. A focus on the positive pressure effect;892
11.5.8;28.8. Future trends;895
11.6;Chapter 29: Ultrasonic drying for food preservation;900
11.6.1;29.1. Introduction;900
11.6.2;29.2. Ultrasonic mechanisms involved in transport phenomena;901
11.6.2.1;29.2.1. Convective transport;902
11.6.2.2;29.2.2. Diffusion transport;903
11.6.3;29.3. Ultrasonic devices for drying;904
11.6.3.1;29.3.1. Stepped-plate and cylindrical radiators;905
11.6.4;29.4. Testing the effectiveness of ultrasonic drying;908
11.6.4.1;29.4.1. Direct-contact applications;912
11.6.4.2;29.4.2. Airborne applications;915
11.6.5;29.5. Product properties affecting the effectiveness of ultrasonic drying;926
11.6.6;29.6. Structural changes caused by ultrasonic drying;930
11.6.7;29.7. Conclusions and future trends;932
11.6.8;Acknowledgment;932
11.7;Chapter 30: The use of ultrasonic atomization for encapsulation and other processes in food and pharmaceutical manufacturing;936
11.7.1;30.1. Introduction;936
11.7.2;30.2. Fundamentals of ultrasonic atomization;937
11.7.3;30.3. Ultrasonic atomizer design;941
11.7.4;30.4. Measuring droplet size and distribution;945
11.7.5;30.5. The effect of different operating parameters on droplet size;946
11.7.6;30.6. Applications of ultrasonic atomization in the food industry: encapsulation;949
11.7.7;30.7. Applications of ultrasonic atomization in the food industry: food hygiene;951
11.7.8;30.8. Applications of ultrasonic atomization in the pharmaceutical industry: aerosols for drug delivery;952
11.7.9;30.9. Applications of ultrasonic atomization in the pharmaceutical industry: encapsulation for drug delivery;954
11.7.10;30.10. Future trends;957
11.7.11;30.11. Conclusion;957
12;Part Five: Environmental and other applications;962
12.1;Chapter 31: The use of power ultrasound for water treatment;964
12.1.1;31.1. Introduction;964
12.1.2;31.2. Ultrasonic cavitation and advanced oxidative processes (AOPs);964
12.1.2.1;31.2.1. Radical hydroxyl and AOPs;965
12.1.2.2;31.2.2. Sonochemistry of water: cavitation and hydroxyl radical;965
12.1.3;31.3. Sonochemical devices and experimentation;967
12.1.3.1;31.3.1. Sonochemical devices;967
12.1.3.2;31.3.2. Reactor calibration;968
12.1.3.3;31.3.3. Ultrasonic effectiveness for water treatment;968
12.1.3.4;31.3.4. Ultrasonic power and efficiency;970
12.1.4;31.4. Characteristics of sonochemical elimination;970
12.1.4.1;31.4.1. Oxidation of water soluble pollutants;970
12.1.4.2;31.4.2. Volatile organic molecules;972
12.1.4.3;31.4.3. Eliminating volatile and nonvolatile molecules from a mixture;972
12.1.5;31.5. Kinetic and sonochemical yields;975
12.1.5.1;31.5.1. Kinetic constant of the sonochemical reaction;975
12.1.5.2;31.5.2. Sonochemical yield and energy consumption;978
12.1.6;31.6. Sonochemical treatment parameters;978
12.1.6.1;31.6.1. The frequency effect;978
12.1.6.2;31.6.2. The influence of temperature;979
12.1.6.3;31.6.3. The influence of pH of the medium;980
12.1.6.4;31.6.4. The effect of dissolved gases;980
12.1.6.5;31.6.5. Formation of HNO2 and HNO3 in an aerated medium;981
12.1.6.6;31.6.6. Enhancers and inhibitors in ultrasonic treatment of natural water;982
12.1.7;31.7. Ultrasound in hybrid processes;982
12.1.7.1;31.7.1. Hydrogen peroxide as a driving force of the hybrid processes;982
12.1.7.2;31.7.2. Ultrasound and UV irradiation processes;984
12.1.7.3;31.7.3. Ultrasound action enhancement in Fenton and photo-Fenton processes;984
12.1.7.4;31.7.4. Ultrasound and ozone;985
12.1.7.5;31.7.5. Ultrasound and photocatalysis;987
12.1.8;31.8. Conclusion;988
12.2;Chapter 32: The use of power ultrasound for wastewater and biomass treatment;998
12.2.1;32.1. Introduction;998
12.2.2;32.2. Impact of ultrasound on biological suspensions;999
12.2.2.1;32.2.1. Examining bacterial biomass disintegration;1000
12.2.2.2;32.2.2. Sonication of bacterial biomass;1003
12.2.2.3;32.2.3. Activated sludge biomass;1004
12.2.2.4;32.2.4. Pure bacterial cultures: M. parvicella and P. aeruginosa;1005
12.2.3;32.3. Anaerobic digestion processes: full-scale application;1008
12.2.3.1;32.3.1. Enhancing anaerobic digestion: the Bamberg wastewater treatment plant (WWTP);1010
12.2.3.2;32.3.2. Power ultrasound systems for biogas plants;1012
12.2.3.2.1;32.3.2.1. The Bordesholmerland biogas plant;1014
12.2.4;32.4. Aerobic biological processes: full-scale application;1015
12.2.4.1;32.4.1. Nitrogen removal;1015
12.2.4.1.1;32.4.1.1. The Bünde WWTP;1015
12.2.4.2;32.4.2. Combating filamentous bacteria and bulking sludge: the Seevetal WWTP;1016
12.2.5;32.5. Development and design of a full-scale ultrasound reactor;1017
12.2.6;32.6. Future trends;1019
12.3;Chapter 33: The use of power ultrasound for organic synthesis in green chemistry;1022
12.3.1;33.1. Introduction;1022
12.3.2;33.2. The green sonochemical approach for organic synthesis;1023
12.3.3;33.3. Solvent-free sonochemical protocols;1025
12.3.4;33.4. Heterogeneous catalysis in organic solvents and ionic liquids;1027
12.3.5;33.5. Heterocycle synthesis;1030
12.3.5.1;33.5.1. Reactions in water;1030
12.3.5.2;33.5.2. Solvent-free reactions;1033
12.3.5.3;33.5.3. Reactions in organic solvents;1034
12.3.6;33.6. Heterocycle functionalization;1036
12.3.6.1;33.6.1. Solvent-free reactions;1038
12.3.6.2;33.6.2. Reactions in organic solvents;1038
12.3.7;33.7. Cycloaddition reactions;1039
12.3.8;33.8. Organometallic reactions;1040
12.3.9;33.9. Multicomponent reactions;1042
12.3.9.1;33.9.1. Reactions in water;1042
12.3.9.2;33.9.2. Reactions in organic solvents;1043
12.3.10;33.10. Conclusions and future trends;1044
12.4;Chapter 34: Ultrasonic agglomeration and preconditioning of aerosol particles for environmental and other applications;1048
12.4.1;34.1. Introduction;1048
12.4.2;34.2. The development of practical applications of aerosol agglomeration;1049
12.4.3;34.3. Linear acoustic effects that determine the agglomeration process;1051
12.4.4;34.4. Nonlinear acoustic effects;1052
12.4.4.1;34.4.1. Radiation pressure and mutual radiation pressure;1052
12.4.4.2;34.4.2. Acoustic wake;1053
12.4.4.3;34.4.3. Acoustic streaming and turbulence;1054
12.4.5;34.5. Motion of aerosol particles in an acoustic field: vibration;1054
12.4.6;34.6. Translational motion of aerosol particles;1057
12.4.6.1;34.6.1. Translational motion due to radiation force;1057
12.4.6.2;34.6.2. Translational motion due to other effects;1057
12.4.7;34.7. Interactions between aerosol particles: orthokinetic effect (OE);1058
12.4.8;34.8. Hydrodynamic mechanisms of particle interaction;1060
12.4.9;34.9. Mutual radiation pressure effect (MRPE);1061
12.4.10;34.10. Acoustic wake effect (AWE);1063
12.4.11;34.11. Modeling of acoustic agglomeration of aerosol particles;1067
12.4.11.1;34.11.1. Aerosol dynamics equation;1067
12.4.11.2;34.11.2. Acoustic agglomeration kernels;1067
12.4.12;34.12. Laboratory and pilot scale plants for industrial and environmental applications;1069
12.4.12.1;34.12.1. Development of acoustic agglomeration system for the removal of fine aerosol particles;1069
12.4.12.2;34.12.2. Experimental system for preconditioning fine aerosol particles;1071
12.4.12.3;34.12.3. Pilot scale acoustic preconditioning systems for coal combustion fumes and diesel exhaust aerosols;1073
12.4.13;34.13. Conclusions and future trends;1075
12.5;Chapter 35: The use of power ultrasound in mining;1084
12.5.1;35.1. Introduction;1084
12.5.2;35.2. The mining process;1085
12.5.3;35.3. Measuring the stress state in a rock mass;1085
12.5.3.1;35.3.1. The acoustic method for rock stress measurement;1086
12.5.3.2;35.3.2. Rock stress measurements using ultrasound;1087
12.5.3.3;35.3.3. Rock stress and ultrasonic propagation properties;1088
12.5.3.4;35.3.4. Rock stress measurements using power ultrasonic transducers;1089
12.5.4;35.4. Application of power ultrasound in mineral grinding;1094
12.5.4.1;35.4.1. Development of a high-pressure ultrasonic roll;1097
12.5.4.2;35.4.2. Characterizing the HPURM performance: Efficiency;1100
12.5.4.3;35.4.3. Characterizing the HPURM performance: Material wear testing;1101
12.5.4.4;35.4.4. Characterizing the HPURM performance: Rate of breakage tests;1102
12.5.5;35.5. Development of an ultrasonic-assisted flotation process for increasing the concentration of mined minerals;1104
12.5.5.1;35.5.1. The flotation process;1105
12.5.5.2;35.5.2. Power ultrasound in flotation;1107
12.5.5.3;35.5.3. Recent developments in the ultrasonic-assisted flotation process;1109
12.5.6;35.6. Conclusions and future trends;1115
12.6;Chapter 36: The use of power ultrasound in biofuel production, bioremediation, and other applications;1120
12.6.1;36.1. Introduction;1120
12.6.2;36.2. The chemical effects of ultrasound;1121
12.6.3;36.3. The molecular effects of ultrasound;1124
12.6.3.1;36.3.1. Physical changes;1125
12.6.3.2;36.3.2. Chemical changes;1126
12.6.3.3;36.3.3. Stress-induced changes;1127
12.6.4;36.4. Sonochemical reactors;1128
12.6.5;36.5. Biofuel production;1128
12.6.6;36.6. Ultrasound-assisted bioremediation;1131
12.6.6.1;36.6.1. Enzymes;1131
12.6.6.2;36.6.2. Effect of ultrasound on enzymes;1133
12.6.6.3;36.6.3. Enzymes as biocatalysts in bioremediation;1133
12.6.7;36.7. Biosensors;1136
12.6.8;36.8. Biosludge processing;1139
12.6.9;36.9. Conclusions and future trends;1142
13;Index;1148
Woodhead Publishing Series in Electronic and Optical Materials
1 Circuit analysis
J. E. Whitehouse 2 Signal processing in electronic communications: For engineers and mathematicians
M. J. Chapman, D. P. Goodall and N. C. Steele 3 Pattern recognition and image processing
D. Luo 4 Digital filters and signal processing in electronic engineering: Theory, applications, architecture, code
S. M. Bozic and R. J. Chance 5 Cable engineering for local area networks
B. J. Elliott 6 Designing a structured cabling system to ISO 11801: Cross-referenced to European CENELEC and American Standards Second edition
B. J. Elliott 7 Microscopy techniques for materials science
A. Clarke and C. Eberhardt 8 Materials for energy conversion devices
Edited by C. C. Sorrell, J. Nowotny and S. Sugihara 9 Digital image processing: Mathematical and computational methods Second edition
J. M. Blackledge 10 Nanolithography and patterning techniques in microelectronics
Edited by D. Bucknall 11 Digital signal processing: Mathematical and computational methods, software development and applications Second edition
J. M. Blackledge 12 Handbook of advanced dielectric, piezoelectric and ferroelectric materials: Synthesis, properties and applications
Edited by Z.-G. Ye 13 Materials for fuel cells
Edited by M. Gasik 14 Solid-state hydrogen storage: Materials and chemistry
Edited by G. Walker 15 Laser cooling of solids
S. V. Petrushkin and V. V. Samartsev 16 Polymer electrolytes: Fundamentals and applications
Edited by C. A. C. Sequeira and D. A. F. Santos 17 Advanced piezoelectric materials: Science and technology
Edited by K. Uchino 18 Optical switches: Materials and design
Edited by S. J. Chua and B. Li 19 Advanced adhesives in electronics: Materials, properties and applications
Edited by M. O. Alam and C. Bailey 20 Thin film growth: Physics, materials science and applications
Edited by Z. Cao 21 Electromigration in thin films and electronic devices: Materials and reliability
Edited by C.-U. Kim 22 In situ characterization of thin film growth
Edited by G. Koster and G. Rijnders 23 Silicon-germanium (SiGe) nanostructures: Production, properties and applications in electronics
Edited by Y. Shiraki and N. Usami 24 High-temperature superconductors
Edited by X. G. Qiu 25 Introduction to the physics of nanoelectronics
S. G. Tan and M. B. A. Jalil 26 Printed films: Materials science and applications in sensors, electronics and photonics
Edited by M. Prudenziati and J. Hormadaly 27 Laser growth and processing of photonic devices
Edited by N. A. Vainos 28 Quantum optics with semiconductor nanostructures
Edited by F. Jahnke 29 Ultrasonic transducers: Materials and design for sensors, actuators and medical applications
Edited by K. Nakamura 30 Waste electrical and electronic equipment (WEEE) handbook
Edited by V. Goodship and A. Stevels 31 Applications of ATILA FEM software to smart materials: Case studies in designing devices
Edited by K. Uchino and J.-C. Debus 32 MEMS for automotive and aerospace applications
Edited by M. Kraft and N. M. White 33 Semiconductor lasers: Fundamentals and applications
Edited by A. Baranov and E. Tournie 34 Handbook of terahertz technology for imaging, sensing and communications
Edited by D. Saeedkia 35 Handbook of solid-state lasers: Materials, systems and applications
Edited by B. Denker and E. Shklovsky 36 Organic light-emitting diodes (OLEDs): Materials, devices and applications
Edited by A. Buckley 37 Lasers for medical applications: Diagnostics, therapy and surgery
Edited by H. Jelínková 38 Semiconductor gas sensors
Edited by R. Jaaniso and O. K. Tan 39 Handbook of organic materials for optical and (opto)electronic devices: Propertiesand applications
Edited by O. Ostroverkhova 40 Metallic films for electronic, optical and magnetic applications: Structure, processing and properties
Edited by K. Barmak and K. Coffey 41 Handbook of laser welding technologies
Edited by S. Katayama 42 Nanolithography: The art of fabricating nanoelectronic and nanophotonic devices and systems
Edited by M. Feldman 43 Laser spectroscopy for sensing: Fundamentals, techniques and applications
Edited by M. Baudelet 44 Chalcogenide glasses: Preparation, properties and applications
Edited by J.-L. Adam and X. Zhang 45 Handbook of MEMS for wireless and mobile applications
Edited by D. Uttamchandani 46 Subsea optics and imaging
Edited by J. Watson and O. Zielinski 47 Carbon nanotubes and graphene for photonic applications
Edited by S. Yamashita, Y. Saito and J. H. Choi 48 Optical biomimetics: Materials and applications
Edited by M. Large 49 Optical thin films and coatings
Edited by A. Piegari and F. Flory 50 Computer design of diffractive optics
Edited by V. A. Soifer 51 Smart sensors and MEMS: Intelligent devices and microsystems for industrial applications
Edited by S. Nihtianov and A. Luque 52 Fundamentals of femtosecond optics
S. A. Kozlov and V. V. Samartsev 53 Nanostructured semiconductor oxides for the next generation of electronics and functional devices: Properties and applications
S. Zhuiykov 54 Nitride semiconductor light-emitting diodes (LEDs): Materials, technologies and applications
Edited by J. J. Huang, H. C. Kuo and S. C. Shen 55 Sensor technologies for civil infrastructures
Volume 1: Sensing hardware and data collection methods for performance assessment
Edited by M. Wang, J. Lynch and H....