E-Book, Englisch, 880 Seiten
Gaigneaux / Devillers / Hermans Scientific Bases for the Preparation of Heterogeneous Catalysts
1. Auflage 2010
ISBN: 978-0-444-53602-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Proceedings of the 10th International Symposium, Louvain-la-Neuve, Belgium, July 11-15, 2010
E-Book, Englisch, 880 Seiten
Reihe: Studies in Surface Science and Catalysis
ISBN: 978-0-444-53602-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
These meetings, held every four years, bring together researchers from academia and industry and offer a forum for discussions on the chemistry involved in the preparation of industrial heterogeneous catalysts. Contributions focus on the aspects of catalyst preparation. Reports on physico-chemical characteristics of catalysts and catalytic performances are limited to correlations with the preparation parameters. Contains a collection of the papers presented at the workshop
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover
;1
2;Scientific Bases for the Preparation of Heterogeneous Catalysts
;4
3;Copyright Page;5
4;Contents;6
5;Foreword;20
6;Organizing committee;24
7;The nanoscale integration of heterostructures in chemo- and bio-catalysis
;26
7.1;Abstract;26
7.2;1. Introduction;26
7.3;2. Inorganic interface control of bioprocesses;27
7.4;3. Interfaces and the multicompositional, hierarchical assembly of functional units
;28
7.5;References;31
8;How the manufacturing technology of industrial catalysts can influence their mechanical strength;34
8.1;Abstract;34
8.2;1. Introduction;34
8.3;2. Experimental techniques;35
8.4;3. Results and discussion;37
8.5;4. Conclusions;40
8.6;References;41
9;Coating metallic foams and structured reactors by VOx/TiO2 oxidation catalyst: Application of RPECVD;42
9.1;Abstract;42
9.2;1. Introduction;42
9.3;2. Experimental;43
9.4;3. Results and discussion;45
9.5;4. Conclusion;49
9.6;Acknowledgements;49
9.7;References;49
10;Washcoating of metallic monoliths and microchannel reactors;50
10.1;Abstract;50
10.2;1. Introduction;50
10.3;2. Results and discussion;51
10.4;3. Conclusions;57
10.5;Acknowledgements;57
10.6;References;57
11;Monolithic catalysts for the decomposition of energetic compounds;60
11.1;Abstract;60
11.2;1. Introduction;60
11.3;2. Geometric parameters of cellular ceramics;61
11.4;3. Preparation of lab-scale cellular ceramic catalysts;62
11.5;4. Preparation of full-scale catalysts;64
11.6;5. Conclusion;66
11.7;Acknowledgements;67
11.8;References;67
12;Glass fiber materials as a new generation of structured catalysts
;68
12.1;Abstract;68
12.2;1. Introduction;68
12.3;2. Zr-silicate glass fiber materials;68
12.4;3. Molecular structure of zirconium-silicate glass fiber materials;69
12.5;4. Preparation of glass fiber catalysts;71
12.6;5. Application of glass fiber materials in catalysis;73
12.7;6. Conclusions;75
12.8;References;75
13;A novel electrochemical route for the catalytic coating of metallic supports;76
13.1;Abstract;76
13.2;1. Introduction;76
13.3;2. Experimental;77
13.4;3. Results and discussion;78
13.5;4. Conclusions;83
13.6;References;83
14;Solution Combustion Synthesis as intriguing technique to quickly produce performing catalysts for specific applications;84
14.1;Abstract - rewritten;84
14.2;1. Introduction;84
14.3;2. Experimental;85
14.4;3. Practical application;88
14.5;4. Conclusions;91
14.6;References;91
15;Impact of NO on the decomposition of supported metal nitrate catalyst precursors and the final metal oxide dispersion;94
15.1;Abstract;94
15.2;1. Introduction;94
15.3;2. Experimental;95
15.4;3. Results and discussion;96
15.5;4. Conclusions;101
15.6;Acknowledgements;101
15.7;References;101
16;A novel approach to synthesize highly selective nickel silicide catalysts for phenylacetylene semihydrogenation;102
16.1;Abstract;102
16.2;1. Introduction;102
16.3;2. Experimental;103
16.4;3. Results and discussion;104
16.5;4. Conclusions;108
16.6;Acknowledgments;108
16.7;References;109
17;Preparation of calcium titanate photocatalysts for hydrogen production;110
17.1;Abstract;110
17.2;1. Introduction;110
17.3;2. Experimental;111
17.4;3. Results and discussion;112
17.5;4. Conclusions;117
17.6;References;117
18;A new procedure to produce carbon-supported metal catalysts;118
18.1;Abstract;118
18.2;1. Introduction;118
18.3;2. Experimental;119
18.4;3. Results and discussion;120
18.5;4. Conclusions;125
18.6;References;125
19;Use of zeta potential measurements in catalyst preparation;126
19.1;Abstract;126
19.2;1. Introduction;126
19.3;2. Experimental;128
19.4;3. Results and discussion;129
19.5;4. Conclusion;132
19.6;Acknowledgments;132
19.7;References;132
20;The superior activity of the CoMo hydrotreating catalysts, prepared using citric acid: what’s the reason?;134
20.1;Abstract;134
20.2;1. Introduction;134
20.3;2. Experimental;135
20.4;3. Results and discussion;136
20.5;4. Conclusions;140
20.6;References;140
21;Elucidation of the surface configuration of the Co(II) and Ni(II) aqua complexes and of the Cr(VI), Mo(VI) and W(VI) monomer and polymer oxo–species deposited on the titania surface during impregnation
;142
21.1;Abstract;142
21.2;1. Introduction;142
21.3;2. Experimental;143
21.4;3. Results and discussion;143
21.5;References;149
22;Innovative characterizations and morphology control of .–AlOOH boehmite nanoparticles: towards advanced tuning of .–Al2O3 catalyst properties;152
22.1;Abstract;152
22.2;1. Introduction;152
22.3;2. Particles size and shape characterizations;153
22.4;3. Synthesis of boehmite particles with tunable size and shape;157
22.5;4. Monitoring of .–alumina formation;158
22.6;5. Conclusions and perspectives;159
22.7;References;159
23;Highly active and selective precious metal catalysts by use of the reduction-deposition method;160
23.1;Abstract;160
23.2;1. Introduction;160
23.3;2. Results and discussion;161
23.4;3. Conclusions;167
23.5;4. Experimental section;167
23.6;Acknowledgement;167
23.7;References;167
24;Investigation of the role of stabilizing agent molecules in the heterogeneous nucleation of rhodium(0) nanoparticles onto Al-SBA-15 supports;170
24.1;Abstract;170
24.2;1. Introduction;170
24.3;2. Experimental;171
24.4;3. Results and discussion;172
24.5;4. Conclusion;177
24.6;Acknowledgments;177
24.7;References;177
25;Preparation of the polymer-stabilized and supported nanostructured catalysts;178
25.1;Abstract;178
25.2;1. Introduction;178
25.3;2. Experimental;179
25.4;3. Results and discussion;180
25.5;4. Conclusions;184
25.6;Acknowledgements;185
25.7;References;185
26;Carbon nanotube-supported sulfided Rh catalysts for the oxygen reduction reaction;186
26.1;Abstract;186
26.2;1. Introduction;186
26.3;2. Experimental;187
26.4;3. Results and discussion;189
26.5;4. Conclusions;193
26.6;Acknowledgements;193
26.7;References;193
27;Synthesis and characterization of highly loaded Pt/carbon xerogel catalysts prepared by the Strong Electrostatic Adsorption method;194
27.1;Abstract;194
27.2;1. Introduction;194
27.3;2. Experimental;195
27.4;3. Results and discussion;198
27.5;4. Conclusions;200
27.6;References;201
28;Catalytic wet air oxidation of succinic acid over monometallic and bimetallic gold based catalysts: Influence of the preparation method;202
28.1;Abstract;202
28.2;1. Introduction;202
28.3;2. Experimental;203
28.4;3. Results and discussion;204
28.5;4. Conclusions;209
28.6;Acknowledgments;209
28.7;References;209
29;Design of hierarchical functional porous mixed oxides from single precursors;210
29.1;Abstract;210
29.2;1. Introduction;210
29.3;2. Macro-mesoporous aluminosilicate materials;211
29.4;3. Ordered mesoporous zirconosilicate;217
29.5;4. Conclusions;217
29.6;References;217
30;Hierarchical porous catalyst support: shaping, mechanical
strength and catalytic performances;218
30.1;Abstract;218
30.2;1. Introduction;218
30.3;2. Experimental section;219
30.4;3. Results;222
30.5;4. Conclusion;225
30.6;References;225
31;Catalytic property of carbon-supported Pt catalysts covered with organosilica layers
on dehydrogenation of organic hydride;226
31.1;Abstract;226
31.2;1. Introduction;226
31.3;2. Experimental;227
31.4;3. Results and discussion;228
31.5;4. Conclusion;232
31.6;Acknowledgment;232
31.7;References;232
32;Molecular aspects of solid silica formation;234
32.1;Abstract;234
32.2;1. Introduction;234
32.3;2. Experimental;235
32.4;3. Results and discussion;236
32.5;References;241
33;A novel continuous approach for the synthesis and characterization of pure and mixed metal oxide
systems applied in heterogeneous catalysis;242
33.1;Abstract;242
33.2;1. Introduction;242
33.3;2. Results and discussion;243
33.4;3. Conclusions;245
33.5;References;245
34;Innovative preparation of Au/C by replication
of gold-containing mesoporous silica catalysts;246
34.1;Abstract;246
34.2;1. Introduction;246
34.3;2. Experimental;246
34.4;3. Results;247
34.5;4. Conclusion;249
34.6;References;249
35;TiO2 photocatalysts prepared by thermohydrolysis
of TiCl4 in aqueous solutions;250
35.1;Abstract;250
35.2;1. Introduction;250
35.3;2. Experimental;250
35.4;3. Results and Discussion;251
35.5;4. Conclusion;253
35.6;Acknowledgments;253
35.7;References;253
36;Metal complex-assisted polymerization of thermosetting resins: a convenient one-step procedure for the preparation of heterogeneous
catalysts;254
36.1;Abstract;254
36.2;1. Introduction;254
36.3;2. Experimental;254
36.4;3. Results and discussion;255
36.5;4. Conclusion;257
36.6;Acknowledgment;257
36.7;References;257
37;Synthesis and study of mesoporous WO3-ZrO2-SiO2
solid acid;258
37.1;Abstract;258
37.2;1. Introduction;258
37.3;2. Experimental;258
37.4;3. Results and discussion;259
37.5;4. Conclusions;261
37.6;References;261
38;Citral hydrogenation over Pt-M/CeO2 catalysts
(M= Zn, Zr);262
38.1;Abstract;262
38.2;1. Introduction;262
38.3;2. Experimental;263
38.4;3. Results and discussion;263
38.5;4. Conclusion;265
38.6;References;265
39;Foam-supported catalysts tailored for industrial
steam reforming processes;266
39.1;Abstract;266
39.2;1. Introduction;266
39.3;2. Experiments;266
39.4;3. Results and discussions;267
39.5;4. Conclusions;269
39.6;References;269
40;Synthesis of ordered nanostructured CuO-CeO2
catalysts by hard template method;270
40.1;Abstract;270
40.2;1. Introduction;270
40.3;2. Experimental;270
40.4;3. Results;272
40.5;4. Conclusions;273
40.6;References;273
41;Fine-tuning of Vanadium Oxide Nanotubes;274
41.1;Abstract;274
41.2;1. Introduction;274
41.3;2. Experimental;274
41.4;3. Results and discussion;275
41.5;4. Conclusions;277
41.6;5. Acknowledgments;277
41.7;References;277
42;Plasma-assisted design of supported cobalt catalysts
for Fischer-Tropsch synthesis;278
42.1;Abstract;278
42.2;1. Introduction;278
42.3;2. Experiments;278
42.4;3. Results;279
42.5;4. Conclusion;281
42.6;References;281
43;Chemical vapor deposition of Fe(CO)4(SiCl3)2 for the synthesis of hydrogenation catalyst made
of highly dispersed iron silicide particles on silica;284
43.1;Abstract;284
43.2;1. Introduction;284
43.3;2. Experimental;285
43.4;3. Results and discussion;285
43.5;4. Conclusions;287
43.6;Acknowledgments;287
43.7;References;287
44;Laser electrodispersion method for the preparation
of self-assembled metal catalysts;288
44.1;Abstract;288
44.2;1. Main Text;288
44.3;Acknowledgments;291
44.4;References;291
45;Nitrogen doped TiO2 photocatalyst prepared
by low energy N+ implantation technique;292
45.1;Abstract;292
45.2;1. Introduction;292
45.3;2. Experimental;293
45.4;3.
Results and discussion;293
45.5;References;295
46;Preparation and characterization of shape-selective ZSM-5 catalyst for para-methyl ethylbenzene
production with toluene and ethylene;296
46.1;Abstract;296
46.2;1. Introduction;296
46.3;2. Experimental;297
46.4;3. Results and discussion;297
46.5;Acknowledgements;299
46.6;References;299
47;Microwave-assisted preparation of Mo2C/CNTs nanocomposites as an efficient support for electrocatalysts toward oxygen reduction
reaction;300
47.1;Abstract;300
47.2;1. Introduction;300
47.3;2. Experimental;300
47.4;3. Results and discussion;301
47.5;4. Conclusions;303
47.6;Acknowledgments;303
47.7;References;303
48;Laser-induced photocatalytic inactivation of coliform bacteria from water using pd-loaded
nano-WO3;304
48.1;Abstract;304
48.2;1. Introduction;304
48.3;2. Experimental;305
48.4;3. Results and Discussion;306
48.5;References;307
49;Effect of the carbon nanotube basicity in Pd/N-CNT catalysts on the synthesis of R-1-phenyl ethyl
acetate;308
49.1;Abstract;308
49.2;1. Introduction;308
49.3;2. Experimental;309
49.4;3. Results and discussion;310
49.5;4. Conclusion;311
49.6;References;311
50;Metal-carbon nanocomposite systems as stable and active catalysts for chlorobenzene
transformations;314
50.1;Abstract;314
50.2;1. Introduction;314
50.3;2. Experimental;314
50.4;3. Results and discussion;315
50.5;4. Conclusion;317
50.6;Acknowledgments;317
50.7;References;317
51;Development and design of Pd-containing
supported catalysts for hydrodechlorination;318
51.1;Abstract;318
51.2;1. Introduction;318
51.3;2. Experimental;318
51.4;3. Results and discussion;319
51.5;4. Conclusions;321
51.6;References;321
52;Role of deposition technique and support nature on the catalytic activity of supported gold clusters:
experimental and theoretical study;322
52.1;Abstract;322
52.2;1. Introduction;322
52.3;2. Experiment;323
52.4;3. Results and discussion;323
52.5;4. Conclusions;325
52.6;References;325
53;Nanosized nickel ferrite catalysts for CO2 reforming of methane at low temperature: effect
of preparation method and acid-base properties;326
53.1;Abstract;326
53.2;1. Introduction;326
53.3;2. Experimental;327
53.4;3. Results and discussion;327
53.5;4. Conclusions;329
53.6;References;329
54;Hierarchical porous Ce-Zr materials for oxidation
of diesel soot particulate;330
54.1;Abstract;330
54.2;1. Introduction;330
54.3;2. Synthesis of Ce-Zr catalysts;330
54.4;3. Physicochemical properties of the catalysts;330
54.5;4. Conclusions;333
54.6;References;333
55;The role of organic additives in the synthesis of mesoporous aluminas and Ni/mesoporous
alumina catalysts;336
55.1;Abstract;336
55.2;1. Introduction;336
55.3;2. Experimental;336
55.4;3. Results and discussion;337
55.5;4. Conclusions;339
55.6;References;339
56;Inverse replica of porous glass as catalyst support;340
56.1;Abstract;340
56.2;1. Introduction;340
56.3;2. Experimental;341
56.4;3. Results and discussion;341
56.5;4. Conclusion;343
56.6;References;343
57;The use of small volume TOC analysis as complementary, indispensable tool in the evaluation of photocatalysts at lab-scale;346
57.1;Abstract;346
57.2;1. Introduction;346
57.3;2. Experimental section;347
57.4;3. Conclusion;349
57.5;Acknowledgement;349
57.6;References;349
58;Enzymatic oxidation of phenols by immobilized
oxidoreductases;350
58.1;Abstract;350
58.2;1. Introduction;350
58.3;2. Experimental;350
58.4;3. Results and discussion;351
58.5;4. Conclusions;353
58.6;Acknowledgements;353
58.7;References;353
59;A coordinative saturated vanadium containing metal organic framework that shows a remarkable
catalytic activity;354
59.1;Abstract;354
59.2;1. Introduction;354
59.3;2. Experimental section;355
59.4;3. Results and discussion;355
59.5;References;357
60;Influence of preparation conditions on properties of gold loaded on the supports containing group
five elements;358
60.1;Abstract;358
60.2;1. Introduction;358
60.3;2. Experimental;358
60.4;3. Results and discussion;359
60.5;4. Conclusions;361
60.6;Acknowledgements;361
60.7;References;362
61;High loaded Ni/SiO2 catalyst for producing
ultra-pure inert gas;364
61.1;Abstract;364
61.2;1. Introduction;364
61.3;2. Experimental;364
61.4;3. Results and discussion;365
61.5;4. Conclusions;367
61.6;References;367
62;The effect of 3d-cation modification on the properties of cordierite-like catalysts;368
62.1;Abstract;368
62.2;1. Introduction;368
62.3;2. Experimental;368
62.4;3. Results and discussion;369
62.5;4. Conclusion;371
62.6;References;371
63;Large-scale synthesis of porous magnetic composites
for catalytic applications;372
63.1;Abstract;372
63.2;1. Introduction;372
63.3;2. Experimental Section;372
63.4;3. Results and discussion;373
63.5;4. Conclusions;375
63.6;Acknowledgments;375
63.7;References;375
64;Preparation of gallium oxide photocatalystsfor reduction of carbon dioxide;376
64.1;Abstract;376
64.2;1. Introduction;376
64.3;2. Experimental;376
64.4;3. Results and discussion;377
64.5;4. Conclusion;379
64.6;References;379
65;Catalytic combustion of methane on ferrites;380
65.1;Abstract;380
65.2;1. Introduction;380
65.3;2. Results;380
65.4;3. Conclusions;383
65.5;References;383
66;Polymer-based nanocatalysts for phenol CWAO;386
66.1;Abstract;386
66.2;1. Introduction;386
66.3;2. Experimental;387
66.4;3. Results and discussion;387
66.5;4. Conclusions;389
66.6;Acknowledgements;389
66.7;References;389
67;A new sulphonic acid functionalized periodic
mesoporous organosilica as a suitable catalyst;390
67.1;Abstract;390
67.2;1. Introduction;390
67.3;2. Experimental section;391
67.4;3. Results and discussion;392
67.5;References;393
68;Effect of the preparation procedure on the structural peculiarities and catalytic properties
of Pt/(CeO2–TiO2) catalyst in CO oxidation;394
68.1;Abstract;394
68.2;1. Introduction;394
68.3;2. Experimental;394
68.4;3. Results and discussion;395
68.5;4. Conclusions;397
68.6;Acknowledgments;397
68.7;References;397
69;Study of the sorption of Cu (II) species on the "Tio2/KNO3" interface;398
69.1;Abstract;398
69.2;1. Introduction;398
69.3;2. Experimental;399
69.4;3. Results and discussion;399
69.5;4. Conclusions;401
69.6;References;401
70;Hydrogenation/Hydrogenolysis of benzaldehyde
over CaTiO3 based catalysts;402
70.1;Abstract;402
70.2;1. Introduction;402
70.3;2. Experimental;402
70.4;3. Results and discussion;403
70.5;4. Conclusion;405
70.6;References;405
71;VSbOx phases formed on MCM-41 supports;406
71.1;Abstract;406
71.2;1. Introduction;406
71.3;2. Experimental;406
71.4;3. Results and discussion;407
71.5;4. Conclusions;409
71.6;Acknowledgements;409
71.7;References;409
72;Influence of the preparation conditions of Ca doped Ni/olivine catalysts on the improvement of gas
quality produced by biomass gasification;410
72.1;Abstract;410
72.2;1. Introduction;410
72.3;2. Experimental;410
72.4;3. Results and discussion;411
72.5;4. Conclusion;413
72.6;References;413
73;Effect of ethylenediamine as chelating agent of cobalt species upon the cobalt-support interactions: application to the VOC catalytic removal;414
73.1;Abstract;414
73.2;1. Introduction;414
73.3;2. Experimental;414
73.4;3. Results and discussion;415
73.5;4. Conclusion;417
73.6;References;417
74;Influence of support on the ammoxidation activity
of VPO catalysts;418
74.1;Abstract;418
74.2;1. Introduction;418
74.3;2. Experimental;418
74.4;3. Results and discussion;419
74.5;4. Conclusions;421
74.6;References;421
75;Rationalization of the aqueous impregnation of molybdenum heteropolyanions on .-alumina support;422
75.1;Abstract;422
75.2;Introduction;422
75.3;1. Experimental;422
75.4;2. Results and discussion;423
75.5;3. Conclusion;425
75.6;References;425
76;Mesoporous SBA-15 silica modified with cerium oxide: Effect of ceria loading on support modification;426
76.1;Abstract;426
76.2;1. Introduction;426
76.3;2. Experimental;427
76.4;3. Results and discussion;427
76.5;4. Conclusions;429
76.6;References;429
77;Synthesis and characterization of catalysts obtained by trifluoromethanesulfonic acid immobilization
on zirconia;430
77.1;Abstract;430
77.2;1. Introduction;430
77.3;2. Experimental;431
77.4;3. Results and discussion;432
77.5;References;433
78;Influence of precursor on the particle size and stability of colloidal gold nanoparticles;434
78.1;Abstract;434
78.2;1. Introduction;434
78.3;2. Experimental;435
78.4;3. Results and discussion;435
78.5;4. Conclusions;437
78.6;References;437
79;V-Mo-Nb-W-containing hydrotalcite-like materials as precursors of catalysts for oxidative
dehydrogenation of hydrocarbons and alcohols;438
79.1;Abstract;438
79.2;1. Introduction;438
79.3;2. Experimental;438
79.4;3. Results and discussion;440
79.5;4. Conclusions;441
79.6;References;441
80;Synthesis of high-surface area CeO2 through silica
xerogel template: influence of cerium salt precursor;442
80.1;Abstract;442
80.2;1. Introduction;442
80.3;2. Experimental;443
80.4;3. Results and discusion;443
80.5;4. Conclusions;445
80.6;References;445
81;Iron based catalyst for hydrocarbons catalytic reforming: A metal-support interaction study to interpret reactivity data;446
81.1;Abstract;446
81.2;1. Introduction;446
81.3;2. Experimental;446
81.4;3. Samples Characterization;447
81.5;4. Catalytic activity;448
81.6;5. Conclusions;449
81.7;References;449
82;Ecofriendly catalysts based on mixed xerogels
for liquid phase oxidations by hydrogen peroxide;450
82.1;Abstract;450
82.2;1. Introduction;450
82.3;2. Experimental;451
82.4;3. Results and discussion;452
82.5;4. Conclusions;453
82.6;Reference;453
83;Preparation of MgF2-MgO supports with specified acid-base properties, and their influence on nickel
catalyst activity in toluene hydrogenation;454
83.1;Abstract;454
83.2;1. Introduction;454
83.3;2. Experimental;455
83.4;3. Results and discussion;456
83.5;References;457
84;Pd supported catalysts: Evolution of the support during Pd deposition and K doping;458
84.1;Abstract;458
84.2;1. Introduction;458
84.3;2. Experimental: Catalyst preparation and characterization techniques;459
84.4;3. Results and Discussion;459
84.5;References;461
85;Investigation of carbon and alumina supported Pd
catalysts during catalyst preparation;462
85.1;Abstract;462
85.2;1. Introduction;462
85.3;2. Experimental: catalyst preparation and characterization techniques;462
85.4;3. Results and discussion;463
85.5;Acknowledgments;465
85.6;References;465
86;Advanced photocatalytic activity using
TiO2/ceramic fiber-based honeycomb;466
86.1;Abstract;466
86.2;1. Introduction;466
86.3;2. Materials and experimental;467
86.4;3. Results and discussion;467
86.5;References;469
87;Incorporation of group five elements
into the faujasite structure;470
87.1;Abstract;470
87.2;1. Introduction;470
87.3;2. Experimental;470
87.4;3. Results and discussion;471
87.5;4. Conclusions;473
87.6;Acknowledgements;473
87.7;References;473
88;Glycerol conversion into H2 by steam reforming over Ni and PtNi catalysts supported on MgO
modified .-Al2O3;474
88.1;Abstract;474
88.2;1. Introduction;474
88.3;2. Catalysts and reaction conditions;474
88.4;3. Experimental results and discussion;475
88.5;4. Conclusions;477
88.6;Acknowledgements;477
88.7;References;477
89;Butyraldehyde production by butanol oxidation over Ru and Cu catalysts supported on ZrO2, TiO2
and CeO2;478
89.1;Abstract;478
89.2;1. Introduction;478
89.3;2. Experimental;478
89.4;3. Results and discussion;479
89.5;4. Conclusions;481
89.6;Acknowledgements;481
89.7;References;481
90;Preparation of Au nanoparticles on Ce-Ti-O supports;482
90.1;Abstract;482
90.2;1. Introduction;482
90.3;2. Experimental;482
90.4;3. Results and discussion;483
90.5;4. Conclusions;485
90.6;Acknowledgments;485
90.7;References;485
91;Preparation, active component and catalytic properties of supported vanadium catalysts in the reaction of formaldehyde oxidation to formic acid;488
91.1;Abstract;488
91.2;1. Introduction;488
91.3;2. Experimental;488
91.4;3. Results and discussion;489
91.5;4. Conclusions;491
91.6;Acknowledgement;491
91.7;References;491
92;Investigation of different preparation methods of PtIr, PtIrSn and PtIrGe catalysts;492
92.1;Abstract;492
92.2;1. Introduction;492
92.3;2. Experimental;492
92.4;3. Results and discussion;493
92.5;4. Conclusion;495
92.6;References;495
93;Perovskite-type catalysts for the water-gas-shift reaction;496
93.1;Abstract;496
93.2;1. Introduction;496
93.3;2. Experimental;496
93.4;3. Results and discussion;497
93.5;4. References;499
94;Evaluation of different methods to prepare the Fe2O3/MoO3 catalyst used for selective oxidation of methanol to formaldehyde;500
94.1;Abstract;500
94.2;1. Introduction;500
94.3;2. Experimental;501
94.4;3. Results and discussion;501
94.5;References;503
95;Formation of active component of MoVTeNb oxide catalyst for selective oxidation and ammoxidation of propane and ethane;504
95.1;Abstract;504
95.2;1. Introduction;504
95.3;2. Experimental;504
95.4;3. Results and discussion;505
95.5;4. Conclusion;507
95.6;Acknowledgements;507
95.7;References;507
96;Functionalization of carbon nanofibers coatedon cordierite monoliths by oxidative treatment;508
96.1;Abstract;508
96.2;1. Introduction;508
96.3;2. Experimental;508
96.4;3. Results;509
96.5;4. Conclusions;511
96.6;Acknowledgement;511
96.7;References;511
97;Synthesis of mesoporous silicas functionalized with trans (1R,2R)-diaminocyclohexane by sol-gel method;512
97.1;Abstract;512
97.2;1. Introduction;512
97.3;2. Experimental;512
97.4;3. Results and discussion;513
97.5;4. Conclusion;515
97.6;References;516
98;Physico-chemical and catalytic properties of effective nanostructured MnCeOx systems for environmental applications;518
98.1;Abstract;518
98.2;1. Introduction;518
98.3;2. Experimental;519
98.4;3. Results and discussion;520
98.5;References;521
99;Novel method for doping of nano TiO2 photocatalysts by chemical vapor deposition;522
99.1;Abstract;522
99.2;1. Introduction;522
99.3;2. Experimental;523
99.4;3. Results and discussion;523
99.5;4. Conclusion;525
99.6;References;525
100;Study on the preparation of active support and multi-porous supported catalyst;526
100.1;Abstract;526
100.2;1. Introduction;526
100.3;2. Experimental;527
100.4;3. Results and discussion;527
100.5;4. Conclusion;529
100.6;References;529
101;The influence of preparation procedure on structural and surface properties of magnesium fluoride support and on the activity of ruthenium catalysts for selective hydrogenation of chloronitrobenzene;530
101.1;Abstract;530
101.2;1. Introduction;530
101.3;2. Experimental;531
101.4;3. Results and discussion;531
101.5;4. Conclusion;533
101.6;References;533
102;Bimetallic Co-Mo-complexes with optimal localization on the support surface: A way for highly active hydrodesulfurization catalysts
preparation for different petroleum distillates;534
102.1;Abstract;534
102.2;1. Introduction;534
102.3;2. Experimental;535
102.4;3. Results and discussion;536
102.5;4. Conclusions;537
102.6;References;537
103;Mn, Mn-Cu and Mn-Co mixed oxides as catalysts synthesized from hydrotalcite type precursors for the total oxidation of ethanol;538
103.1;Abstract;538
103.2;1. Introduction;538
103.3;2. Experimental;538
103.4;3. Results and discussion;539
103.5;4. Conclusions;541
103.6;Acknowledgment;541
103.7;References;541
104;Mesoporous manganese oxide catalysts for formaldehyde removal: influence of the cerium incorporation;542
104.1;Abstract;542
104.2;1. Introduction;542
104.3;2. Experimental;543
104.4;3. Results and discussion;543
104.5;4. Conclusion;545
104.6;References;545
105;Nickel nanoparticles with controlled morphologies application in selective hydrogenation catalysis;546
105.1;Abstract;546
105.2;1. Introduction;546
105.3;2. Experimental;546
105.4;3. Results and discussion;547
105.5;4. Conclusion;549
105.6;References;549
106;Behavior of NiMo(W)/Zr-SBA-15 deep hydrodesulfurization catalysts in presence of aromatic and nitrogen-containing
compounds;550
106.1;Abstract;550
106.2;1. Introduction;550
106.3;2. Experimental;550
106.4;3. Results and discussion;551
106.5;4. Conclusions;553
106.6;Acknowledgements;553
106.7;References;553
107;Effect of citrate addition in NiMo/SBA-15 catalysts on selectivity of DBT
hydrodesulfurization;554
107.1;Abstract;554
107.2;1. Introduction;554
107.3;2. Experimental;554
107.4;3. Results and discussion;555
107.5;4. Conclusions;557
107.6;Acknowledgements;557
107.7;References;557
108;Investigation of the microwave heating techniques for the synthesis of LaMnO3+d: influence of the starting
materials;558
108.1;Abstract;558
108.2;1. Introduction;558
108.3;1. Experimental;559
108.4;2. Results and discussion;560
108.5;3. Conclusion;561
108.6;Acknowledgements;561
108.7;References;561
109;The novel route of preparation of the supported gold catalysts by
deposition-precipitation;562
109.1;Abstract;562
109.2;1. Introduction;562
109.3;2. Experimental;562
109.4;3. Results and dicussion;563
109.5;4. Conclusions;565
109.6;References;565
110;A new approach for the dispersion of VOPO4.2H2O through exfoliation and its catalytic activity for the selective oxidation of
cyclohexane;566
110.1;Abstract;566
110.2;1. Introduction;566
110.3;2. Experimental;566
110.4;3. Results and discussion;567
110.5;4. Conclusions;569
110.6;References;569
111;Mesoporous CuO-Fe2O3 composite catalysts for complete n-hexane
oxidation;572
111.1;Abstract;572
111.2;1. Introduction;572
111.3;2. Experimental;572
111.4;3. Results and discussion;573
111.5;4. Conclusion;575
111.6;Acknowledgements;575
111.7;References;575
112;Preparation of PtRu/C electrocatalysts by hydrothermal carbonization using different carbon
sources;576
112.1;Abstract;576
112.2;1. Introduction;576
112.3;2. Experimental;576
112.4;3. Results and discussion;577
112.5;4. Conclusions;579
112.6;Acknowledgments;579
112.7;References;579
113;Preparation of PtSn/C electrocatalysts using electron beam
irradiation;580
113.1;Abstract;580
113.2;1. Introduction;580
113.3;2. Experimental;580
113.4;3. Results and discussion;581
113.5;4. Conclusions;583
113.6;Acknowledgments;583
113.7;References;583
114;Preparation of PtSn/C skeletal-type electrocatalyst for ethanol
oxidation;584
114.1;Abstract;584
114.2;1. Introduction;584
114.3;2. Experimental;585
114.4;3. Results and discussion;585
114.5;4. Conclusions;587
114.6;Acknowledgments;587
114.7;References;587
115;Preparation of binary M/Mn (M = Co, Cu, Zn) oxide catalysts by thermal degradation of heterobimetallic
complexes;588
115.1;Abstract;588
115.2;1. Introduction;588
115.3;2. Experimental;588
115.4;3. Results and discussion;589
115.5;4. Conclusions;591
115.6;References;591
116;Preparation of highly active gas oil HDS catalyst by modification of conventional oxidic precursor with
1,5-pentanediol;592
116.1;Abstract;592
116.2;1. Introduction;592
116.3;2. Experimental;592
116.4;3. Results and discussion;593
116.5;4. Conclusion;595
116.6;References;595
117;Hierarchical meso-/macroporous phosphated and phosphonated titania nanocomposite materials with high photocatalytic
activity;596
117.1;Abstract;596
117.2;1. Introduction;596
117.3;2. Experimental;597
117.4;3. Results and discussion;597
117.5;4. Conclusions;599
117.6;References;599
118;Gold and CuO nanocatalysts supported on hierarchical structured Ce-doped titanias for low temperature CO
oxidation;600
118.1;Abstract;600
118.2;1. Introduction;600
118.3;2. Experimental;601
118.4;3. Results and discussion;601
118.5;4. Conclusions;603
118.6;References;604
119;Facile preparation of MoO3/SiO2-Al2O3 olefin metathesis catalysts by thermal
spreading;606
119.1;Abstract;606
119.2;1. Introduction;606
119.3;2. Experimental;606
119.4;3. Results and discussion;608
119.5;4. Conclusion;609
119.6;Acknowledgments;609
119.7;References;609
120;Mesoporous TiO2-SBA15 composites used as supports for molybdenum-based hydrotreating
catalysts;612
120.1;Abstract;612
120.2;1. Introduction;612
120.3;2. Experimental section;613
120.4;3. Results and discussion;613
120.5;4. Conclusion;615
120.6;References;615
121;p-Hydroxybenzoic acid degradation by Fe/Pd-HNT catalysts with in situ generated hydrogen
peroxide;618
121.1;Abstract;618
121.2;1. Introduction;618
121.3;2. Experimental;619
121.4;3. Results and discussion;620
121.5;4. Conclusion;621
121.6;References;621
122;Synthesis of ionic liquid templated zeolite like
structures;622
122.1;Abstract;622
122.2;1. Introduction;622
122.3;2. Experimental;622
122.4;3. Results and discussion;623
122.5;4. Conclusions;625
122.6;References;625
123;New class of acid catalysts for methanol
dehydration;626
123.1;Abstract;626
123.2;1. Introduction;626
123.3;2. Experimental;626
123.4;3. Results and discussion;627
123.5;4. Conclusions;629
123.6;References;629
124;One-Pot deposition of palladium on hybrid TiO2 nanoparticles: application for the hydrogenation of
cinnamaldehyde;630
124.1;Abstract;630
124.2;1. Introduction;630
124.3;2. Experimental;631
124.4;3. Results and discussion;632
124.5;4. Conclusion;633
124.6;References;633
125;Catalytic activity of nanostructured Pd catalysts supported on hydrogenotitanate
nanotubes;634
125.1;Abstract;634
125.2;1. Introduction;634
125.3;2. Experimental;635
125.4;3. Results and discussion;635
125.5;4. Conclusion;637
125.6;References;637
126;Temperature – dependent evolution of molecular configurations of oxomolybdenum species on MoO3/TiO2 catalysts monitored by in situ Raman spectroscopy
;638
126.1;Abstract;638
126.2;1. Introduction;638
126.3;2. Experimental;639
126.4;3. Results and discussion;639
126.5;References;641
127;Preparation of nanosized bimetallic Ni-Sn and Ni-Au/SiO2 catalysts by SOMC/M. Correlation between structure and catalytic properties in styrene
hydrogenation;642
127.1;Abstract;642
127.2;1. Introduction;642
127.3;2. Bimetallic catalysts, preparation and characterization;643
127.4;3. Styrene hydrogenation;645
127.5;4. Conclusion;645
127.6;References;645
128;Microwave-assisted synthesis of Au, Ag and Au-Ag nanoparticles and their catalytic activities for the reduction of
nitrophenol;646
128.1;Abstract;646
128.2;1. Introduction;646
128.3;2. Experimental procedure;646
128.4;3. Results and discussion;648
128.5;4. Conclusions;649
128.6;References;649
129;A new composite micro/meso porous material used as the support of catalyst for polyaromatic compound
hydrogenation;650
129.1;Abstract;650
129.2;1. Introduction;650
129.3;2. Experimental;650
129.4;3. Results and discussion;651
129.5;4. Conclusion;653
129.6;Acknowledgements;653
129.7;References;653
130;Photodeposition of Au and Pt on ZnO and TiO2;654
130.1;Abstract;654
130.2;1. Introduction;654
130.3;2. Experimental;654
130.4;3. Results and discussion;655
130.5;4. Conclusions;657
130.6;Acknowledgements;657
130.7;References;657
131;Cellulose-templated materials for partial oxidation of methane: effect of template and calcination parameters on catalytic
performance;660
131.1;Abstract;660
131.2;1. Introduction;660
131.3;2. Experimental;660
131.4;3. Results;661
131.5;4. Conclusion;663
131.6;References;663
132;Highly porous hydrotalcite-like film growth on anodised aluminium
monoliths;664
132.1;Abstract;664
132.2;1. Introduction;664
132.3;2. Experimental;665
132.4;3. Results and discussion;665
132.5;4. Conclusion;667
132.6;Acknowledgments;667
132.7;References;667
133;The influence of impregnation temperature on the pzc of titania and the loading of Ni upon preparation of Ni/TiO2
catalysts;668
133.1;Abstract;668
133.2;1. Introduction;668
133.3;2. Experimental;669
133.4;3. Results and discusion;669
133.5;4. Conclusions;671
133.6;References;671
134;Immobilization of homogeneous catalysts in nanostructured carbon
xerogels;672
134.1;Abstract;672
134.2;1. Introduction;672
134.3;2. Experimental;673
134.4;3. Results and discussion;673
134.5;4. Conclusions;675
134.6;References;675
135;Coating method for Ni/MgAl2O4 deposition on metallic
foams;678
135.1;Abstract;678
135.2;1. Introduction;678
135.3;2. Experimental;679
135.4;3. Results;680
135.5;4. Conclusions;681
135.6;References;681
136;Use of commercial carbons as template for the preparation of high specific surface area
perovskites;682
136.1;Abstract;682
136.2;1. Introduction;682
136.3;2. Experimental;682
136.4;3. Results and discussion;683
136.5;4. Conclusions;685
136.6;Acknowledgments;685
136.7;References;685
137;Ethyl acetate combustion catalyzed by oxidized brass
micromonoliths;686
137.1;Abstract;686
137.2;1. Introduction;686
137.3;2. Experimental;686
137.4;3. Results and discussion;687
137.5;4. Conclusion;689
137.6;Acknowledgments;689
137.7;References;689
138;Preparation of CMI-1 supported H3+xPMo12 xVxO40 for the selective oxidation of
propylene;690
138.1;Abstract;690
138.2;1. Introduction;690
138.3;2. Experimental;691
138.4;3. Results and discussion;691
138.5;4. Conclusion;693
138.6;References;693
139;Direct addition of the precursor salts of Mo, Co or Ni oxides during the sol formation of .-Al2O3 and ZrO2 – The effect on metal
dispersion;696
139.1;Abstract;696
139.2;1. Introduction;696
139.3;2. Experimental section;696
139.4;3. Results and discussion;697
139.5;4. Conclusions;698
139.6;References;699
140;Glycothermal synthesis as a method of obtaining high surface area supports for noble metal
catalysts;700
140.1;Abstract;700
140.2;1. Introduction;700
140.3;2. Experiment;701
140.4;3. Results and discussion;701
140.5;4. Conclusion;703
140.6;Acknowledgments;703
140.7;References;703
141;Synthesis and characterization of cok-12 ordered mesoporous silica at room temperature under buffered quasi neutral
pH;706
141.1;Abstract;706
141.2;1. Introduction;706
141.3;2. Experimental;707
141.4;3. Results and discussion;707
141.5;4. Conclusions;709
141.6;5. Aknowledgements;709
141.7;References;709
142;Spray drying of porous alumina support for Fischer-Tropsch
catalysis;710
142.1;Abstract;710
142.2;1. Introduction;710
142.3;2. Experimental;710
142.4;3. Results and discussion;711
142.5;4. Conclusions;713
142.6;References;713
143;Ni/SiO2 fiber catalyst prepared by electrospinning technique for glycerol reforming to synthesis
gas;714
143.1;Abstract;714
143.2;1. Introduction;714
143.3;2. Experimental;714
143.4;3. Results and discussion;716
143.5;4. Conclusion;717
143.6;Acknowledgement;717
143.7;References;718
144;Selective preparation of ß-MoO3 and silicomolybdic acid(SMA) on MCM-41 from molybdic acid precursor and their partial oxidation
performances;720
144.1;Abstract;720
144.2;1. Introduction;720
144.3;2. Experimental;720
144.4;3. Results and discussion;721
144.5;References;723
145;Functionalization of carbon xerogels for the preparation of Pd/C catalysts by grafting of Pd
complex;724
145.1;Abstract;724
145.2;1. Introduction;724
145.3;2. Experimental;724
145.4;3. Results and discussion;725
145.5;4. Conclusion;727
145.6;Acknowledgement;727
145.7;References;727
146;Preparation of Pd-Bi catalysts by grafting of coordination compounds onto functionalized carbon
supports;728
146.1;Abstract;728
146.2;1. Introduction;728
146.3;2. Experimental;728
146.4;3. Results and discussion;729
146.5;4. Conclusion;731
146.6;References;731
147;Novel dicarboxylate heteroaromatic metal organic frameworks as the catalyst supports for the hydrogenation
reaction;732
147.1;Abstract;732
147.2;1. Introduction;732
147.3;2. Experimental;733
147.4;3. Results and discussion;734
147.5;4. Conclusions;735
147.6;References;735
148;Monitoring of the state of silver in porous oxides during catalyst
preparation;736
148.1;Abstract;736
148.2;1. Introduction;736
148.3;2. Experimental;737
148.4;3. Results;737
148.5;4. Conclusion;739
148.6;References;739
149;Strong electrostatic adsorption for the preparation of Pt/Co/C and Pd/Co/C bimetallic
electrocatalysts;740
149.1;Abstract;740
149.2;1. Introduction;740
149.3;2. Experimental;741
149.4;3. Results and discussion;741
149.5;4. Conclusions;743
149.6;References;743
150;Preparation of gold catalysts supported on SiO2-TiO2 for the CO PROX
reaction;744
150.1;Abstract;744
150.2;1. Introduction;744
150.3;2. Experimental;744
150.4;3. Results and discussion;745
150.5;4. Conclusions;747
150.6;Acknowledgment;747
150.7;References;747
151;A method of preparation of active TiO2-SiO2 photocatalysts for water
purification;748
151.1;Abstract;748
151.2;1. Introduction;748
151.3;2. Experimental;748
151.4;3. Results and discussion;750
151.5;4. Conclusions;751
151.6;Acknowledgement;751
151.7;References;751
152;n-Heptane hydroconversion on bifunctional hierarchical catalyst derived from zeolite
MCM-22;752
152.1;Abstract;752
152.2;1. Introduction;752
152.3;2. Experimental;753
152.4;3. Results and discussion;753
152.5;4. Conclusions;755
152.6;Acknowledgement;755
152.7;References;755
153;Preparation and characterization of nanocrystallines Mn-Ce-Zr mixed oxide catalysts by sol-gel method : application to the complete oxidation of
n-butanol;756
153.1;Abstract;756
153.2;1. Introduction;756
153.3;2. Experimental;757
153.4;3. Results and discussion;757
153.5;4. Conclusion;759
153.6;Acknowledgements;759
153.7;References;759
154;SCR activity of conformed CuOX/ZrO2-SO4
catalysts;760
154.1;Abstract;760
154.2;1. Introduction;760
154.3;2. Experimental;761
154.4;3. Results and discussion;762
154.5;References;763
155;Pore design of pelletised VOX/ZrO2-SO4/Sepiolite composite
catalysts;764
155.1;Abstract;764
155.2;1. Introduction;764
155.3;2. Experimental;765
155.4;3. Results and discussion;766
155.5;References;767
156;Titanium oxide nanotubes as supports of Au or Pd nano-sized catalysts for total oxidation of
VOCs;768
156.1;Abstract;768
156.2;1. Introduction;768
156.3;2. Experimental;768
156.4;3. Results and discussion;769
156.5;4. Conclusion;770
156.6;Acknowledgements;771
156.7;References;771
157;Preparation of Alkali-M/ZrO2 (M = Co or Cu) for VOCs oxidation in the presence of NOx or carbonaceous
particles;772
157.1;Abstract;772
157.2;1. Introduction;772
157.3;2. Experimental;772
157.4;3. Results;773
157.5;4. Conclusion;775
157.6;Ackowledgements;775
157.7;References;775
158;Design of appropriate surface sites for ruthenium-ceria catalysts supported on graphite by controlled preparation
method;776
158.1;Abstract;776
158.2;1. Introduction;776
158.3;2. Experimental;777
158.4;3. Results and discussion;777
158.5;4. Conclusions;779
158.6;References;779
159;Preparation of monolithic catalysts for space propulsion
applications;780
159.1;Abstract;780
159.2;1. Introduction;780
159.3;2. Experimental;781
159.4;3. Results and discussions;782
159.5;Conclusion;783
159.6;Acknowledgments;783
159.7;References;783
160;Synthesis of mixed zirconium-silver phosphates and formation of active catalyst surface for the ethylene glycol oxidation
process;784
160.1;Abstract;784
160.2;1. Introduction;784
160.3;2. Experimental;784
160.4;3. Results and discussion;785
160.5;4. Conclusion;787
160.6;References;787
161;Characterization of cobalt nanoparticles on different supports for Fischer-Tropsch
synthesis;788
161.1;Abstract;788
161.2;1. Introduction;788
161.3;2. Experimental;789
161.4;3. Results and discussion;789
161.5;4. Conclusions;791
161.6;References;791
162;Enhanced dibenzothiophene desulfurization over NiMo catalysts simultaneously impregnated with
saccharose;792
162.1;Abstract;792
162.2;1. Introduction;792
162.3;2. Experimental;792
162.4;3. Results and discussion;793
162.5;4. Conclusions;795
162.6;References;795
163;Preparation of Pt on NaY zeolite catalysts for conversion of glycerol into
1,2-propanediol;796
163.1;Abstract;796
163.2;1. Introduction;796
163.3;2. Preparation and characterization of NaY zeolite supported Pt catalysts;797
163.4;3. Catalytic conversion of glycerol into 1,2-propanediol;798
163.5;4. Conclusion;799
163.6;Acknowledgements;799
163.7;References;799
164;Alkali metal supported on mesoporous alumina as basic catalysts for fatty acid methyl esters
preparation;800
164.1;Abstract;800
164.2;1. Introduction;800
164.3;2. Experimental;800
164.4;3. Results and discussion;802
164.5;4. Conclusions;803
164.6;Acknowledgements;803
164.7;References;803
165;Modifications of porous stainless steel previous to the synthesis of
Pd membranes;804
165.1;Abstract;804
165.2;1. Introduction;804
165.3;2. Experimental;805
165.4;3. Results and discussion;806
165.5;4. Conclusions;807
165.6;Acknowledgments;808
165.7;References;808
166;Design of nano-sized FeOx and Au/FeOx catalysts for total oxidation of VOC and preferential oxidation of
CO;810
166.1;Abstract;810
166.2;1. Introduction;810
166.3;2. Experimental;810
166.4;3. Results and discussion;811
166.5;4. Conclusions;813
166.6;References;813
167;Supported Pd nanoparticles prepared by a modified water-in-oil microemulsion
method;814
167.1;Abstract;814
167.2;1. Introduction;814
167.3;2. Experimental;815
167.4;3. Results and discussion;815
167.5;4. Conclusions;817
167.6;Acknowledgements;817
167.7;References;817
168;Preparation of silica-coated Pt-Ni alloy nanoperticles using microemulsions and formation of carbon nanofibers by
ethylene decomposition;818
168.1;Abstract;818
168.2;1. Introduction;818
168.3;2. Experimental;819
168.4;3. Results and discussion;819
168.5;4. Conclusions;821
168.6;References;821
169;Sol-gel synthesis combined with solid exchange method, a new alternative process to prepare improved Pd/ZrO2-Al2O3-SiO2
catalysts;822
169.1;Abstract;822
169.2;1. Introduction;822
169.3;2. Experimental;822
169.4;3. Results and discussion;823
169.5;4. Conclusion;825
169.6;References;825
170;Sol-gel synthesis of micro- and mesoporous silica in strong
mineral acid;826
170.1;Abstract;826
170.2;1. Introduction;826
170.3;2. Experimental;826
170.4;3. Results and discussion;827
170.5;4. Conclusion;829
170.6;Acknowledgements;829
170.7;References;829
171;Ag-V2O5/TiO2 total oxidation catalyst: autocatalytic removal of the surfactant and synergy between silver and
vanadia;830
171.1;Abstract;830
171.2;1. Introduction;830
171.3;2. Experimental;831
171.4;3. Results and discussion;831
171.5;4. Conclusion;833
171.6;Acknowledgments;833
171.7;References;833
172;Controlled synthesis of porous heteropolysalts used as catalysts
supports;836
172.1;Abstract;836
172.2;1. Introduction;836
172.3;2. Experimental;836
172.4;3. Results and discussion;837
172.5;4. Conclusions;839
172.6;References;839
173;Influence of the sodium-based precipitants on the properties of aluminum-doped hematite catalysts for ethylbenzene
dehydrogenation;840
173.1;Abstract;840
173.2;1. Introduction;840
173.3;2. Experimental;840
173.4;3. Results and discussion;841
173.5;4. Conclusions;843
173.6;References;843
174;Effect of the preparation method on the properties of hematite-based catalysts with lanthanum for styrene
production;844
174.1;Abstract;844
174.2;1. Introduction;844
174.3;2. Experimental;844
174.4;3. Results and discussion;845
174.5;4. Conclusions;846
174.6;References;847
175;Low-organics method to synthesize silver nanoparticles in an aqueous
medium;848
175.1;Abstract;848
175.2;1. Introduction;848
175.3;2. Experimental;848
175.4;3. Results and discussion;849
175.5;References;851
176;Clusters as precursors of nanoparticles supported on carbon
nanofibers;852
176.1;Abstract;852
176.2;1. Introduction;852
176.3;2. Experimental section;852
176.4;3. Results and discussion;853
176.5;4. Conclusion;855
176.6;Acknowledgement;855
176.7;References;855
177;X-ray photoelectron spectroscopy study of nitrided
zeolites;856
177.1;Abstract;856
177.2;1. Introduction;856
177.3;2. Experimental;857
177.4;3. Results and discussion;857
177.5;4. Conclusion;859
177.6;References;859
178;Development of a modified co-precipitation route for thermally resistant, high surface area ceria-zirconia based solid
solutions;860
178.1;Abstract;860
178.2;1. Introduction;860
178.3;2. Experimental procedures;860
178.4;3. Results and discussion;861
178.5;4. Conclusion;863
178.6;References;863
179;Deposition of gold clusters onto porous coordination polymers by solid
grinding;864
179.1;Abstract;864
179.2;1. Introduction;864
179.3;2. Experimental;864
179.4;3. Results and discussion;865
179.5;4. Conclusions;867
179.6;Acknowledgements;867
179.7;References;867
180;Influence of the preparation methods for Pt/CeO2 and Au/CeO2 catalysts in CO
oxidation;868
180.1;Abstract;868
180.2;1. Introduction;868
180.3;2. Experimental;869
180.4;3. Results and discussion;869
180.5;4. Conclusions;871
180.6;Acknowledgment;872
180.7;References;872
181;Author index;874
The nanoscale integration of heterostructures in chemo- and bio-catalysis
Galen D. Stucky Department of Chemistry & Biochemistry and Materials Department, University of California, Santa Barbara, California 93106 USA Abstract
During the past twenty years improvements in synthesis and characterization capabilities have made possible the designed molecular assembly of complex materials with spatially distinct, multifunctional features that are hierarchically structured. These materials are systems in their own right, with property variables that can built in or used in a dynamic mode. This offers a challenging, but very real opportunity to control chemo- and bio-processs systems. An example is given of the use of high-surface-area inorganic interfaces to control the catalytically driven bioprocesses of a biosystem of some complexity, followed by a selected overview of some recent strategies for the synthesis of multicompositional functional units and their use in controlling processes in chemo catalysis. Keywords biosystems catalytic systems interfaces bioprocess control heterostructured materials 1 Introduction
Living biosystems provide a sophisticated catalysis model that is currently well beyond the best bench-top and commercial efforts (Barnes 1986; Rich 2003; Litvin 2009; O’Driscoll 2007). In biogenesis, the components of the organized, integrated, multicomponent system are created and function via non-linear, frequently autocatalytic processing. The bioprocess is typically directed by entropy change and interface inter-actions in confined spaces with high fidelity selectivity at the atomic scale. The biosystem space/time assembly definition of structure and function makes possible the closely coupled organization and processing of integrated organic and inorganic domains. In their Introductory Perspective to a Special Feature of the Proceedings of the National Academy of Sciences on “Complex systems: From Chemistry to Systems Biology”, John Ross and Adam Arkin (Ross 2009) summarize it succinctly and well. “There is great interest in complex systems in chemistry, biology, engineering, physics, and gene networks, among others. The complexity comes from the fact that in many systems there are a large number of variables, many connections among the variables including feedback loops, and many, usually nonlinear, equations of motion, or kinetic and transport equations. “Many” is a relative term; a properly interacting system of just three variables can show deterministic chaos, a complex behavior indeed. For the natural scientist and the engineer, nearly all their systems are complex [emphasis added]. Many problems still resist the arguments of symmetry, averaging, time-scale separation, and covariation that often underlie complexity reductions.” Experimentally, from a combinatorial perspective of finding the “right catalyst” (e.g., Gobin 2008; Polshettiwar 2009) there is great flexibility for catalyst design but a major challenge in predicting the performance consequences of the catalysts that are created. The systems approach to composite materials and device assembly and design is an intriguing potential route for the control of bio and catalytic processes. Whether or not it will be a commercially successful approach remains to be determined, but there is little doubt but that it will provide a new perspective of complex system design and function. In the first part of the presentation, an example will be given of the use of highsurface-area inorganic interfaces to control the catalytically driven bioprocesses of a biosystem of some complexity. The latter part of the presentation is a selected overview of some recent strategies for the synthesis of multicompositional functional units and their use in controlling processes in chemo catalysis. 2 Inorganic interface control of bioprocesses
This issue is of increasing interest because of the use of silica mesoporous agents as cardiovascular drug delivery agents for the treatment of cancer (Klichko 2009; Park 2009; Slowing 2006) and as gene transfection agents (Radu 2004). In the example presented here, the high-surface-area inorganic phase, which can include a zeolite, mesoporous structure or layered clay structure, is considered as a system in its own right, and is most effective as a porous heterostructure that is capable of acting as a delivery or uptake agent for heat, electrolytes, or large enzymatic biomolecules. The biosystem response is considered in the context of the new total system that is created by its interface with the original unperturbed biosystem. The inorganic interface is also used to probe the network nodes of the total biosystem by monitoring the bioprocess activity response to the interface upon selective depletion of the normal biosystem proteins. The biosystem of interest is the blood clotting cascade, which consists of 122 proteins, including enzymes, that form a system network with 278 known interactions that can be further complicated by anticoagulation agents such as Warfarin and heparin. The system is autocatalytic with the formation of thrombin, which then further catalyzes the activation of the clotting part of the cascade. It is also self-regulating with uncontrolled anti-coagulation catalysis resulting in coagulopathy and bleeding diathesis. Our in vitro studies (Ostomel 2006abc, 2007; Baker 2007, 2008) and in vivo studies carried out by UHUHS (Ahuja 2006; McCarron 2008) have shown that arterial hemorrhaging can be very effectively controlled to give close to 100% survivability (Kheirabadi 2009) by interfacing an appropriate inorganic material with the blood coagulation system and catalytically accelerating the blood coagulation process. The highest efficacy, at low therapeutic material dosage levels, is obtained when a pure silica mesoporous material is used with pore sizes above 24 nm. If the mesoporous material is also used as a delivery agent for thrombin, which can be readily loaded into its 3D cage structure, an even greater efficiency for blood clotting is obtained. The inorganic system variables evaluated in this research with different inorganic agents were composition, heterostructure, time to initiate coagulation, rate of coagulation, strength of the resulting fibrin network, heat transfer, local dehydration of the blood, electrolyte delivery or uptake, zeta potential in simulated body fluid, dissolution or exfoliation of the inorganic phase, accessible protein surface area, and biocompatibility. Studies of the blood clotting cascade system with and without the inorganic are still in progress, but inorganic variables that are highly correlated with the coagulation res-ponse of the biosystem, and most importantly from a mechanistic point of view, specific blood clotting factors, have been identified. The use of the inorganic interface to probe and better map out the processes of this biosystem is expected to continue for some time in the future, and will include microfluidic real time studies and system modeling. The in vivo validation of the in vitro studies carried out in our laboratories ultimately resulted in its adoption for military and civilian use (products commerically available from Z-Medica Inc.). From a pragmatic perspective, approaching this problem as a system problem was very effective. However, one important point must be made in this connection. The tie lines that connected benchtop research, scale-up (including in vitro to in vivo evaluation), formulating a commercial product, and even receiving critical evaluations from medical personnel regarding the pros and cons in field application were exceptional in terms of the short response time and openness of communication. This greatly expedited and facilitated the practical design of the most effective materials for this application. The most important characteristic of any complex system is the function for which it was intended to deliver. This determines the synthesis strategies that are used, the characterization techniques that are applied, and the on-going guidance of the direction of the research. The most serious limitation in systems analysis is the generation of sufficient experimental data to develop a meaningful understanding of the network interactions so that a predictive model can be generated. 3 Interfaces and the multicompositional, hierarchical assembly of functional units
A desirable way to introduce coupled multiple subsystem functionalities is by the integrated, but spatially distinct, organization of domains with different composition. The size, composition and morphology of these heterostructure domains are dependent on the application. If 3D interconnected porous domains are introduced to control residence times in catalytic processes, pore or cage diameters on the order of 100 nm may be in order. For phonon Rayleigh scattering, smaller domain sizes may be appropriate. For oxidation-reduction, electron transport processes such as photo-catalysis (Yates 2009) and photovoltaic applications, two key challenges are electron-hole recombination and the existence of electron trap states at the domain interfaces as well as in the bulk. For photovoltaics, we have shown that the use of semimetal nanoscale heterostructures epitaxially implanted at the charge transfer interface of p-n semi-conductor junctions...