E-Book, Englisch, 488 Seiten
Introduction and Fundamentals
E-Book, Englisch, 488 Seiten
Reihe: Mechanical and Aerospace Engineering Series
ISBN: 978-1-4200-3657-2
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
The first of three volumes, MEMS: Introduction and Fundamentals covers the theoretical and conceptual underpinnings of the field, emphasizing the physical phenomena that dominate at the micro-scale. It also explores the mechanical properties of MEMS materials, modeling and simulation of MEMS, control theory, and bubble/drop transport in microchannels. Chapters were updated where necessary, and the book also includes two new chapters on microscale hydrodynamics and lattice Boltzmann simulations. This volume builds a strong foundation for further study and work in the MEMS field.
MEMS: Introduction and Fundamentals comprises contributions from the foremost experts in their respective specialties from around the world. Acclaimed author and expert Mohamed Gad-el-Hak has again raised the bar to set a new standard for excellence and authority in the fledgling fields of MEMS and nanotechnology.
Zielgruppe
Electrical, mechanical, chemical, circuits, devices, and electronics engineers, physicists, chemists, and nanotechnologists, as well as students and researchers in these areas
Autoren/Hrsg.
Weitere Infos & Material
Introduction; Mohamed Gad-el-Hak
Scaling of Micromechanical Devices; William Trimmer and Robert H. Stroud
Mechanical Properties of MEMS Materials; William N. Sharpe, Jr.
Flow Physics; Mohamed Gad-el-Hak
Integrated Simulation for MEMS: Coupling Flow-Structure-Thermal-Electrical Domains; Robert M. Kirby, George Em Karniadakis, Oleg Mikulchenko, and Kartikeya Mayaram
Molecular-Based Microfluidic Simulation Models; Ali Beskok
Hydrodynamics of Small-Scale Internal Gaseous Flows; Nicolas G. Hadjiconstantinou
Burnett Simulations of Flows in Microdevices; Ramesh K. Agarwal and Keon-Young Yun
Lattice Boltzmann Simulations of Slip Flows in Microchannels; Ramesh K. Agarwal
Liquid Flow in Microchannels; Kendra V. Sharp, Ronald J. Adrian, Juan G. Santiago, and Joshua I. Molho
Lubrication in MEMS; Kenneth Breuer
Physics of Thin Liquid Films; Alexander Oron
Bubble/Drop Transport in Microchannels; Hsueh-Chia Chang
Fundamentals of Control Theory; J. William Goodwine
Model-Based Flow Control for Distributed Architectures; Thomas R. Bewley
Soft Computing in Control; Mihir Sen and Bill Goodwine
Index