Buch, Englisch, Band 19, 393 Seiten, HC runder Rücken kaschiert, Format (B × H): 183 mm x 260 mm, Gewicht: 2200 g
Reihe: Catalysis by Metal Complexes
Buch, Englisch, Band 19, 393 Seiten, HC runder Rücken kaschiert, Format (B × H): 183 mm x 260 mm, Gewicht: 2200 g
Reihe: Catalysis by Metal Complexes
ISBN: 978-0-7923-4240-3
Verlag: Springer Netherlands
Audience: Research chemists interested in the use of oxygenases in catalysis.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Biochemie (nichtmedizinisch)
- Naturwissenschaften Chemie Organische Chemie Biochemie
- Naturwissenschaften Chemie Anorganische Chemie Nichtmetallische Chemie
- Naturwissenschaften Chemie Physikalische Chemie Chemische Reaktionen, Katalyse
- Naturwissenschaften Chemie Physikalische Chemie Elektrochemie, Magnetochemie
Weitere Infos & Material
1. Introduction — Developments in Enzymatic and Model Studies on Oxygenases.- 1.1. Oxygenases.- 1.2. Oxygenase model s.- 1.3. Biomimetic chemistry and bioinspired catalysis.- 1.4. References.- 2. Dioxygenases.- 2.1. Introduction.- 2.2. Catechol dioxygenases.- 2.3. Other double bond cleaving dioxygenases.- 2.4. Other dioxygenases.- 2.5. Supplement for extradiol cleaving catechol dioxygenases.- 2.6. Concluding remarks.- 2.7. References.- 3. Iron Model Studies on Dioxygenases.- 3.1. Introduction.- 3.2. Catechol dioxygenases.- 3.3. Tryptophan 2,3-dioxygenase.- 3.4. Lipoxygenases.- 3.5. ?-Keto acid-dependent dioxygenases.- 3.6. Supplement for catechol dioxygenases.- 3.7. Concluding remarks.- 3.8. References.- 4. Non-Iron Model Studies on Dioxygenases.- 4.1. Introduction.- 4.2. Cobalt Schiff base complexes as simple dioxygenase models.- 4.3. Co(TPP) catalyzed oxygenation of indoles.- 4.4. Vanadium complexes.- 4.5. Manganese complexes.- 4.6. Copper complexes.- 4.7. Ruthenium, rhodium, iridium complexes.- 4.8. Concluding remarks.- 4.9. References.- 5. Heme Monooxygenases — A Chemical Mechanism for Cytochrome P450 Oxygen Activation —.- 5.1. Introduction.- 5.2. Reaction cycle of cytochrome P450cam.- 5.3. Oxygen bond scission and catalysis.- 5.4. Summary.- 5.5. Acknowledgement.- 5.6. References.- 6. Model Studies on Heme Monooxygenases.- 6.1. Introduction.- 6.2. Successful use of synthetic heme models: Model studies of Fe porphyrin having thiolate ligand.- 6.3. Molecular mechanism of the oxygen activation by P-450.- 6.4. Electrochemical oxidation of iron porphyrin complexes.- 6.5. Mechanistic aspects of compound I formation.- 6.6. O=Mn, O=Cr, and O=Ru porphyrin complexes.- 6.7. Reductive oxygen activation by P-450 models.- 6.8. Catalytic oxidation of organic compoundscatalyzed by iron porphyrins.- 6.9. Catalytic oxidation by manganese porphyrins.- 6.10. Multiplicity of the active species in the catalytic oxidation.- 6.11. Selective oxidations.- 6.12. Metalloporphyrin complexes showing high catalytic efficiency in oxidations.- 6.13. Summary.- 6.14. References.- 7. Nonheme Monooxygenases.- 7.1. Introduction.- 7.2. Nonheme iron monooxygenases.- 7.4. Concluding remarks.- 7.5. References.- 8. Model Studies on Nonheme Monooxygenases — Chemical Models for Nonheme Iron and Copper Monooxygenases —.- 8.1. Introduction.- 8.2. Chemical models for putative reaction intermediates of nonheme iron monooxygenases.- 8.3. Chemical models for copper monooxygenases.- 8.4. References.