E-Book, Englisch, Band 131, 180 Seiten
Fulton Introduction to Toric Varieties. (AM-131), Volume 131
1. Auflage 2016
ISBN: 978-1-4008-8252-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, Band 131, 180 Seiten
Reihe: Annals of Mathematics Studies
ISBN: 978-1-4008-8252-6
Verlag: De Gruyter
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
No detailed description available for "Introduction to Toric Varieties. (AM-131), Volume 131".
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Ch. 1 Definitions and examples
1.1 Introduction 3
1.2 Convex polyhedral cones 8
1.3 Affine toric varieties 15
1.4 Fans and toric varieties 20
1.5 Toric varieties from polytopes 23
Ch. 2 Singularities and compactness
2.1 Local properties of toric varieties 28
2.2 Surfaces; quotient singularities 31
2.3 One-parameter subgroups; limit points 36
2.4 Compactness and properness 39
2.5 Nonsingular surfaces 42
2.6 Resolution of singularities 45
Ch. 3 Orbits, topology, and line bundles
3.1 Orbits 51
3.2 Fundamental groups and Euler characteristics 56
3.3 Divisors 60
3.4 Line bundles 63
3.5 Cohomology of line bundles 73
Ch. 4 Moment maps and the tangent bundle
4.1 The manifold with singular corners 78
4.2 Moment map 81
4.3 Differentials and the tangent bundle 85
4.4 Serre duality 87
4.5 Betti numbers 91
Ch. 5 Intersection theory
5.1 Chow groups 96
5.2 Cohomology of nonsingular toric varieties 101
5.3 Riemann-Roch theorem 108
5.4 Mixed volumes 114
5.5 Bezout theorem 121
5.6 Stanley's theorem 124
Notes 131
References 149
Index of Notation 151
Index 155