E-Book, Englisch, 431 Seiten, eBook
Reihe: Engineering Materials
Fujisaki Magnetic Material for Motor Drive Systems
1. Auflage 2019
ISBN: 978-981-329-906-1
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Fusion Technology of Electromagnetic Fields
E-Book, Englisch, 431 Seiten, eBook
Reihe: Engineering Materials
ISBN: 978-981-329-906-1
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book focuses on how to use magnetic material usefully for electrical motor drive system, especially electrical vehicles and power electronics. The contents have been selected in such a way that engineers in other fields might find some of the ideas difficult to grasp, but they can easily acquire a general or basic understanding of related concepts if they acquire even a rudimentary understanding of the selected contents.The cutting-edge technologies of magnetism are also explained. From the fundamental theory of magnetism to material, equipment, and applications, readers can understand the underlying concepts. Therefore, a new electric vehicle from the point of view of magnetic materials or a new magnetic material from the point of a view of electric vehicles can be envisioned: that is, magnetic material for motor drive systems based on fusion technology of an electromagnetic field. Magnetic material alone does not make up an electric vehicle, of course. Other components such as mechanical structure material, semiconductors, fuel cells, and electrically conductive material are important, and they are difficult to achieve. However, magnetic material involves one of the most important key technologies, and there are high expectations for its use in the future. It will be the future standard for motor-drive system researchers and of magneticmaterial researchers as well. This book is a first step in that direction.
Keisuke Fujisaki (S'82-M'83-SM'02, IEEE) received the B. Eng., degree in electronics engineering from the Faculty of Engineering, The University of Tokyo, Tokyo, Japan, in 1981 and M.Eng., and Dr.Eng. degrees from Graduate school of the University of Tokyo, Tokyo, Japan, in 1983 and 1986, respectively. From 1986 to 1991, he conducted research on electromagnetic force applications to steel-making plants at the Ohita Works, Nippon Steel Corporation. From 1991 to 2010, he has been with the Technical Development Bureau, Nippon Steel Corporation, Futtsu, Japan. Since 2010, he was a professor of Toyota Technological Institute. His current scientific interests are magnetic multi-scale, electromagnetic multi-physics, high efficient motor drive system, electrical motor, and power electronics. In 2002-2003, he was a Visiting Professor at Ohita University. In 2003-2009, he was a Visiting Professor at Tohoku University. Dr. Fujisaki received the Outstanding Prize Paper Award at the Metal Industry Committee sessions of the 2002 IEEE Industry Applications Society Annual Meeting.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Motor Drive System and Magnetic Material: Contents of This Book;11
3.1;1 Motor and Power Electronics and Magnetic Material [1–8];11
3.2;2 Contents of This Book;14
3.3;References;16
4;General (Background of New Magnetic Material Requirement for Power Electronics Technology);17
5;Technical Requirement to Magnetic Material in Motor Drive System;18
5.1;1 Introduction;18
5.2;2 Conventional Motor and Coming Power Electronics Excitation Motor [6–8];20
5.3;3 What Is a Movement;22
5.4;4 Electrical Energy and Power Electronics Technology;23
5.5;5 High-Frequency Requirement and Magnetic Material in Power Electronics;26
5.6;6 Magnetic Material for Electrical Energy Application;31
5.7;7 Future Research of Electrical Motor;32
5.8;References;34
6;Fundamental Concept of Magnetic Material for Electrical Engineer;36
6.1;1 Multi-scale of Magnetic Material;36
6.1.1;1.1 Appearance of Magnetization;37
6.1.2;1.2 Magnetic Structure;38
6.1.3;1.3 Polycrystalline Body;40
6.1.4;1.4 Crystal Grain Control;41
6.2;2 Magnetization Process;42
6.3;3 Iron Loss;44
6.4;4 High-Frequency Magnetization;46
6.5;5 Mechanical Stress Influence;46
6.6;6 Magnetic Anisotropy;48
6.7;7 Magnetic Measurement;50
6.8;8 Information Magnetics and Power Magnetics;51
6.9;References;53
7;Fundamental Concept of Electrical Motor for Magnetic Researcher;54
7.1;1 Fundament Theory and Structure of Electrical Motor;54
7.2;2 Three-Phase Alternating Current and Traveling Magnetic Field;57
7.3;3 AC Motor [1–4];65
7.4;4 Permanent Magnet Synchronous Motor (IPMSM, SPMSM) [5];67
7.5;References;69
8;Fundamental Concept of Power Electronics for Magnetic Researcher;70
8.1;1 Summary of Power Electronics Technology [1, 2];70
8.2;2 Switching Operation of Power Semiconductor;72
8.3;3 Inverter Circuit and Its Operation [3];73
8.4;4 Significance of Power Electronics [4–6];79
8.5;References;80
9;Fusion Science and Technology of Electromagnetic Field [1];82
9.1;1 Introduction;82
9.2;2 Multi-scale, Multi-physics, and Multi-time (Fist Class Fusion) [1];84
9.2.1;2.1 Electromagnetic Field Application [7–9];84
9.2.2;2.2 Electromagnetic Materials [10, 11];86
9.2.3;2.3 Electromagnetic Energy Apparatus;87
9.2.4;2.4 First-Class Fusion;88
9.3;3 Second-Class Fusion (Fusion of Purpose and Means);89
9.4;References;90
10;Magnetic Material Excited by Power Electronics Equipment;91
11;Magnetic Property and Measurement Excited by PWM Inverter;92
11.1;1 Measurement Equipment of Magnetic Property Excited by Inverter;92
11.2;2 Minor Loop Generation in Inverter Excitation;94
11.3;3 Carrier Frequency Characteristics Under Inverter Excitation;96
11.4;4 Minor Loop Outbreak Due to On-Resistance of Power Semiconductor [4];97
11.5;5 Power Semiconductor Property and Iron Loss [9];100
11.6;6 Measurement Technology in Inverter Excitation [12];103
11.7;7 Magnetic Characteristics Required for Magnetic Material [9, 10];107
11.8;References;110
12;Iron Loss Measurement of Interior Permanent Magnet Synchronous Motor;112
12.1;1 Motor Characteristic and Experimental Methodology;112
12.1.1;1.1 Interior Permanent Magnet Motor Characteristics;112
12.1.2;1.2 Measurement Methodology;113
12.2;2 Calculation of the IPMSM Iron Losses by Finite Element Analysis;116
12.2.1;2.1 Calculation of the Hysteresis Losses;117
12.2.2;2.2 Calculation of the Eddy Current Losses;118
12.3;3 Effect of the PWM Carrier Frequency on the IPMSM Iron Losses;119
12.4;4 Effect of the PWM Modulation Index on the IPMSM Iron Losses;121
12.4.1;4.1 Analysis of the Phase Voltage and Current;122
12.4.2;4.2 Analysis of the Magnetic Flux Density;124
12.5;5 Effect of the Dead-Time on the IPMSM Iron Losses;125
12.6;6 Effect of the Load on the IPMSM Iron Losses;126
12.6.1;6.1 Analysis of the Phase Voltage;127
12.6.2;6.2 Analysis of the Phase Current;128
12.6.3;6.3 Analysis of the Magnetic Flux Density by Finite Element Analysis;130
12.7;References;132
13;Electrical Motor Applied by Low Iron Loss Magnetic Material;133
13.1;1 Introduction;133
13.2;2 Magnetic Anisotropic Motor Using Grain-Oriented Steel;135
13.3;3 Amorphous Motor [9–11];139
13.4;4 Nanocrystal Motor [12];142
13.5;References;145
14;Magnetism and Its Modelling;146
15;Origin of Magnetism 90 Years of Misunderstanding;147
15.1;1 Introduction;147
15.2;2 Difficulties in the Many-Body Problem;149
15.3;3 Truth Behind the Formation of Molecules and Crystals from Atoms;150
15.4;4 Even to Solve One Atom Is a Many-Body Problem;155
15.5;5 Virial Theorem;156
15.6;6 Heisenberg’s Exchange Interaction Cannot Explain the Origin of Magnetism-Explanation of Hund’s Rule for Atoms–;159
15.7;7 High Accuracy Calculation on Magnetism in Molecules;162
15.8;8 Cr@Sin Clusters;164
15.9;9 Conclusions—Seeking for a Satisfactory Condition;165
15.10;References;167
16;Magnetic Domain Structures and Techniques in Micromagnetics Simulation;169
16.1;1 Magnetic Structure of Grain-Oriented Electrical Steel (GOES);169
16.2;2 Magnetic Domain and Domain Wall;170
16.3;3 Magnetization Processes;173
16.4;4 Micromagnetics Simulation;175
16.4.1;4.1 LL and LLG Equations;175
16.4.2;4.2 Effective Magnetic Field;177
16.5;5 Numerical Methods for First-Order Initial Value Problem;178
16.6;6 Magnetic Domain Structures Calculated by Using the LLG Equation;181
16.7;References;183
17;Polycrystalline Magnetic Calculation;184
17.1;1 Introduction;184
17.2;2 Polycrystalline Magnetic Analysis Model [3];185
17.3;3 Model Validity Verification;189
17.4;References;192
18;Magnetic Hysteresis Represented by Play Model;193
18.1;1 Introduction;193
18.2;2 Play Model;194
18.3;3 Comparison with the Preisach Model;195
18.4;4 Identification of the Play Model;198
18.5;5 B-Input Play Model;199
18.6;6 Vector Play Model;200
18.6.1;6.1 Superposition of Scalar Models;200
18.6.2;6.2 Geometric Extension of the Scalar Model;201
18.6.3;6.3 Anisotropic Vector Play Model;202
18.7;References;204
19;From a Thermodynamic Model to a Magnetic Hysteresis Model;205
19.1;1 The Thermodynamics of Magnetic Materials;205
19.2;2 Free Energy and Hysteresis;209
19.3;3 A Friction Model of Hysteresis;211
20;Equivalent Circuit of AC Magnetic Fields;216
20.1;1 Eddy Current and Complex Permeability;216
20.2;2 Equivalent Circuit of Complex Permeability;219
20.3;3 Synthesis of Magnetic Fields;222
20.4;4 Modeling for Wire;223
20.5;5 Arbitrary Eddy-Current Field;225
20.6;References;227
21;Coupled Analysis of Semiconductor Characteristics and Magnetic Properties;228
21.1;1 Introduction;229
21.2;2 Semiconductor Characteristics and Magnetic Properties;229
21.2.1;2.1 Inverter Excitation and Magnetic Properties;229
21.2.2;2.2 Semiconductor Characteristics and Inverter Output Voltage;230
21.2.3;2.3 Output Voltage Waveform of Inverter and Minor Loop Shape;232
21.3;3 Calculation Method with Mutual Consideration on Semiconductor Characteristics and Magnetic Properties;234
21.3.1;3.1 Procedure (I) Generation of Ideal PWM Voltage Waveform;234
21.3.2;3.2 Procedure (II) Calculation of Magnetic Flux Density Waveform;234
21.3.3;3.3 Procedure (III) Magnetic Analysis with Consideration of Magnetic Hysteresis Characteristics;235
21.3.4;3.4 Procedure (IV) Calculation of Magnetic Field Strength Waveform;240
21.3.5;3.5 Procedure (V) Circuit Analysis with Consideration on On-Voltage Characteristics of Semiconductor Devices;241
21.3.6;3.6 Procedure (VI) Determination of Convergence;243
21.3.7;3.7 Procedure (VII) Overlap of on-Voltage Waveform on the Ideal Voltage Waveform;243
21.4;4 Calculation Example of Magnetic Characteristics Under Inverter Excitation Using Different Types of Semiconductor Components;243
21.5;References;245
22;Vector Magnetic Characteristic;246
22.1;1 Basic Concept;246
22.1.1;1.1 Standard Magnetic Measurement Method;249
22.1.2;1.2 Evaluation Magnetic Measurement Method;250
22.1.3;1.3 Utilizable Magnetic Measurement Method;250
22.2;2 Vector Magnetic Characteristics;251
22.3;3 Magnetic Characteristic Analysis;253
22.4;4 Summarize;255
22.5;References;257
23;Future Magnetic Material;259
24;History and Future of Soft and Hard Magnetic Materials;260
24.1;1 Soft and Hard Magnetic Materials;260
24.2;2 Soft Magnetic Materials;261
24.2.1;2.1 History of the Development of Soft Magnetic Materials [5–7, 12];261
24.2.2;2.2 Permalloy [4, 12];262
24.2.3;2.3 Sendust [5, 6, 12];263
24.2.4;2.4 Si Steel (Magnetic Steel) [12];263
24.2.5;2.5 Amorphous Alloys and Nanocrystalline Alloys [7];264
24.2.6;2.6 Soft Ferrite;266
24.3;3 Hard Magnetic Materials [1, 2, 8–10];266
24.3.1;3.1 Guidelines for Increasing Performance in Permanent Magnets [9];266
24.3.2;3.2 History of the Development of Hard Magnetic Materials [8, 10, 11];268
24.3.3;3.3 Ferrite Magnets [8, 10];271
24.3.4;3.4 Nd–Fe–B Magnets [8, 10];271
24.4;4 Future of Magnetic Materials;272
24.5;References;273
25;Low-Loss Soft Magnetic Materials;277
25.1;1 Typical Soft Magnetic Materials and Positioning;277
25.2;2 Amorphous Soft Magnetic Alloys;279
25.2.1;2.1 History of the Development of Amorphous Soft Magnetic Alloys;279
25.2.2;2.2 Production Method for Amorphous Soft Magnetic Alloy [4, 5];280
25.2.3;2.3 Features of Amorphous Soft Magnetic Alloy;281
25.2.4;2.4 Application of Amorphous Soft Magnetic Alloy to Motors;284
25.3;3 Nanocrystalline Soft Magnetic Alloys;295
25.3.1;3.1 History of Development of Nanocrystalline Soft Magnetic Alloys;295
25.3.2;3.2 Production Method for Nanocrystalline Soft Magnetic Alloys;296
25.3.3;3.3 Magnetic Properties and Motor Application of Nanocrystalline Soft Magnetic Alloys;302
25.4;References;304
26;Nd–Fe–B-Based Sintered Magnet;306
26.1;1 Introduction;306
26.2;2 Basic Knowledge to Understand Nd–Fe–B-Based Sintered Magnets;308
26.2.1;2.1 General Indicators on the Characteristics of Permanent Magnets from a Practical Viewpoint;308
26.2.2;2.2 Factors that Determine the Characteristics of a Permanent Magnet;309
26.2.3;2.3 General Feature of Nd–Fe–B-Based Sintered Magnets;310
26.2.4;2.4 Nd2Fe14B Compound;311
26.2.5;2.5 Nd–Fe–B Ternary Phase Diagram;313
26.2.6;2.6 Manufacturing Process of Nd–Fe–B-Based Sintered Magnet;315
26.3;3 Technology for High-Performance Nd–Fe–B-Based Sintered Magnet;320
26.3.1;3.1 Technology for Obtaining High Br;320
26.3.2;3.2 Technology for Obtaining High HcJ;321
26.4;4 Summary;322
26.5;References;322
27;Bonded Rare Earth Permanent Magnets;325
27.1;1 Basic Characteristics of Magnets;325
27.2;2 Types of Magnet Powder;327
27.2.1;2.1 Isotropic Magnet Powder;327
27.2.2;2.2 Anisotropic Magnet Powder;331
27.2.3;2.3 Recent Development Trends;332
27.3;3 Binder;333
27.4;4 Molding Method;333
27.4.1;4.1 Compression Molding Method;334
27.4.2;4.2 Injection Molding Method;335
27.4.3;4.3 Other Molding Methods;338
27.5;5 Orientation Technology;338
27.6;6 Magnetizing Technique;340
27.7;7 Temporal Change of the Magnetic Flux;340
27.8;8 Temperature Characteristics;341
27.9;9 Surface Coating;341
27.10;10 Weather Resistance;342
27.11;References;342
28;The Rare Earths Problem for Permanent Magnets;345
28.1;1 Introduction;345
28.2;2 Typical Permanent Magnets and Rare Earth Elements Used Therein;348
28.2.1;2.1 Perspectives of the High Performance Iron-Based Permanent Magnets Containing Light Rare Earths;348
28.2.2;2.2 Nd–Fe–B Permanent Magnets Free from Heavy Rare Earth Elements;350
28.3;3 Required Properties of Permanent Magnets for Motor Applications;351
28.4;4 Perspectives of Materials Research Toward Solving the Rare Earth Issue in Permanent Magnets;352
28.5;References;353
29;High-Frequency Magnetics;354
29.1;1 Introduction;354
29.2;2 Soft Magnetic Thin Film Having Uniaxial Magnetic Anisotropy;355
29.2.1;2.1 Magnetization Rotation by Magnetization Hard Axis Excitation;357
29.2.2;2.2 Ferromagnetic Resonance Frequency;360
29.3;3 Development Example of Magnetic Thin-film Inductor;362
29.3.1;3.1 CoFeSiO/SiO2 Granular Magnetic Thin-film Inductor;362
29.3.2;3.2 High Q Inductor Using Magnetic Fine Particle Composite Material;365
29.4;4 Conclusions;368
29.5;References;368
30;Magnetic Application;370
31;Iron Loss Analysis of Motors;371
31.1;1 Introduction;371
31.2;2 Components of Iron Loss and Calculation Methods;372
31.3;3 Calculation Method of Motor Iron Loss Considering Harmonics;374
31.4;4 Calculation Method of Motor Iron Loss Considering Mechanical Stress;376
31.5;5 Example of Iron Loss Calculation of Motors [8];378
31.6;References;383
32;Iron Loss of the Inductors;385
32.1;1 Magnetization of the Inductor in PWM Inverter;385
32.2;2 Measurement Method of Iron Loss Under Direct Magnetic Field Bias Condition;389
32.3;3 Iron Loss Calculation Method and Evaluation Method of Inductor;392
32.4;References;399
33;Application of Magnetism to Automobiles;400
33.1;1 “Run”;400
33.1.1;1.1 Fuel Injection Control;401
33.1.2;1.2 Ignition and Combustion Control;404
33.1.3;1.3 Transmission Control;407
33.1.4;1.4 Cooling;408
33.1.5;1.5 Starting and Power Supply;408
33.1.6;1.6 Drive Motor Control;409
33.2;2 “Turn”;410
33.3;3 “Stop”;412
33.4;4 Evolution of Magnetic Materials for Automobiles;413
33.5;Reference;414
34;Magnetic Application in Linear Motor;415
34.1;1 Introduction;415
34.2;2 Linear Motor and Linear Drive System;416
34.2.1;2.1 Classification of Linear Motors;416
34.2.2;2.2 Linear Drive System;416
34.2.3;2.3 Linear Induction Motor (LIM);417
34.2.4;2.4 Linear DC Motor (LDM);418
34.2.5;2.5 Linear Synchronous Motor (LSM);419
34.2.6;2.6 Linear Stepping Motor (LSTM);420
34.2.7;2.7 Linear Actuator;421
34.3;3 Characteristic Evaluation of Linear Motor;422
34.3.1;3.1 Thrust Constant;422
34.3.2;3.2 Motor Constant;422
34.3.3;3.3 Motor Constant Square Density;423
34.3.4;3.4 Power Rate;423
34.4;4 Magnetic Circuit for High-Performance LSM;423
34.4.1;4.1 Thrust and Normal Force;423
34.4.2;4.2 Arrangement of Permanent Magnet;424
34.4.3;4.3 Example of High-Performance LSM;425
34.4.4;4.4 Comparative Evaluation of High Performance;428
34.5;References;428
35;Final Remark;430
Motor Drive System and Magnetic Material: Constitution of this book.- New Magnetic Material Requirement for Motor Drive System.- Magnetic Material.- Electrical Motor.- Power Electronics.- Electromagnetic Fusion Technology: Fusion of machine, application and material.- Magnetic Property excited by PWM Inverter.- Motor Core Loss Property Excited by Inverter.- Electrical Motor Applied by Low Iron Loss Magnetic Material.- Fundamental Theory for New Magnetic Material.- Magnetic Structure and Micromagnetics Calculation.- Polycristal Magnetic Modeling.- Magnetic Hysteresis Modeling by Play Model.- Magnetic Hysteresis Modeling by Thermo-Dynamic Model.- Equivalent Electrical Circuit Expression for High Frequency Electromagnetic Characteristics.- Combined Analysis Model of Power Semiconductor and Magnetic Characteristics.- Two-Dimensional Vector Magnetic Property.- Now and Future of Magnetic Material: Technical History of Magnetic Material and Permanent Magnet.- Low Loss Soft Magnetic Materials.- Sintered NdFeB Magnet.- Bonded NdFeB Magnet.- Rare Earth Problem for Permanent Magnets.- High Frequency Magnetic Characteristics.- Iron Loss Calculation of Electrical Motor.- Inductance Core Loss.- Magnetic Application for Automobile Car.- Magnetic Application in Linear Motor.