E-Book, Englisch, 326 Seiten
Fujimoto Physics of Classical Electromagnetism
1. Auflage 2007
ISBN: 978-0-387-68018-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 326 Seiten
ISBN: 978-0-387-68018-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book is unique because unlike others on the subject that focus on mathematical arguments, this volume emphasizes the original field concept, aiming at objectives in modern information technology. Written primarily for undergraduate students of physics and engineering, this book serves as a useful reference for graduate students and researchers too. With concise introductory arguments for the physics of electromagnetism, this book covers basic topics including the nature of space-time-dependent radiations in modern applications.
Minoru Fujimoto is retired Professor of Physics at the University of Guelph, Ontario, Canada.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;5
2;Preface;10
3;Steady Electric Currents;12
3.1;1.1. Introduction;12
3.2;1.2. Standards for Electric Voltages and Current;13
3.3;1.3. Ohm Law's and Heat Energy;15
3.4;1.4. The Kirchhoff Theorem;19
4;Electrostatics;24
4.1;Electrostatic Fields;25
4.1.1;2.1. Static Charges and Their Interactions;25
4.1.2;2.2. A Transient Current and Static Charges;26
4.1.3;2.3. Uniform Electric Field in a Parallel-Plate Condenser;29
4.1.4;2.4. Parallel and Series Connections of Capacitors;35
4.1.5;2.5. Insulating Materials;36
4.1.6;Exercises;39
4.2;The Gauss Theorem;40
4.2.1;3.1. A Spherical Capacitor;40
4.2.2;3.2. A Cylindrical Capacitor;43
4.2.3;3.3. The Gauss Theorem;44
4.2.4;3.4. Boundary Conditions;49
4.3;The Laplace-Poisson Equations;53
4.3.1;4.1. The Electrostatic Potential;53
4.3.2;4.2. The Gauss Theorem in Differential Form;54
4.3.3;4.3. Curvilinear Coordinates (1);56
4.3.4;4.4. The Laplace-Poisson Equations;59
4.3.5;4.5. Simple Examples;63
4.3.6;4.6. The Coulomb Potential;65
4.3.7;4.7. Point Charges and the Superposition Principle;68
4.4;The Legendre Expansion of Potentials;74
4.4.1;5.1. The Laplace Equation in Spherical Coordinates;74
4.4.2;5.2. Series Expansion of the Coulomb Potential;76
4.4.3;5.3. LegendreÌs Polynomials;78
4.4.4;5.4. A Conducting Sphere in a Uniform Field;79
4.4.5;5.5. A Dielectric Sphere in a Uniform Field;81
4.4.6;5.6. A Point Charge Near a Grounded Conducting Sphere;82
4.4.7;5.7. A Simple Quadrupole;85
4.4.8;5.8. Associated Legendre Polynomials;86
4.4.9;5.9. Multipole Potentials;89
5;Electromagnetism;93
5.1;The Amp`ere Law;94
5.1.1;6.1. Introduction;94
5.1.2;6.2. The Amp`ere Law;95
5.1.3;6.3. A Long Solenoid;98
5.1.4;6.4. Stokes' Theorem;100
5.1.5;6.5. Curvilinear Coordinates (2);103
5.1.6;6.6. The Amp`ere Law in Differential Form;105
5.1.7;6.7. The Rowland Experiment;107
5.2;Magnetic Induction;110
5.2.1;7.1. Laws of Magnetic Induction;110
5.2.2;7.2. Differential Law of Induction and the Dynamic Electric Field;113
5.2.3;7.3. Magnetic Moments;117
5.3;Scalar and Vector Potentials;121
5.3.1;8.1. Magnets;121
5.3.2;8.2. Pohl's Magnetic Potentiometer;123
5.3.3;8.3. Scalar Potentials of Magnets ;125
5.3.4;8.4. Vector Potentials;128
5.3.5;8.5. Examples of Steady Magnetic Fields;130
5.3.6;8.6. Vector and Scalar Potentials of a Magnetic Moment;135
5.3.7;8.7. Magnetism of a Bohr's Atom;137
5.4;Inductances and Magnetic Energies;141
5.4.1;9.1. Inductances;141
5.4.2;9.2. Self- and Mutual Inductances;144
5.4.3;9.3. Mutual Interaction Force Between Currents;147
5.4.4;9.4. Examples of Mutual Induction;148
5.5;Time-Dependent Currents;151
5.5.1;10.1. Continuity of Charge and Current;151
5.5.2;10.2. Alternating Currents;152
5.5.3;10.3. Impedances;154
5.5.4;10.4. Complex Vector Diagrams;156
5.5.5;10.5. Resonances ;158
5.5.6;10.6. Four-Terminal Networks;161
6;Electromagnetic Waves;168
6.1;Transmission Lines;169
6.1.1;11.1. Self-Sustained Oscillators;169
6.1.2;11.2. Transmission Lines;171
6.1.3;11.3. Fourier Transforms;173
6.1.4;11.4. Reflection and Standing Waves;175
6.1.5;11.5. The Smith Chart;178
6.2;The Maxwell Equations;180
6.2.1;12.1. The Maxwell Equations;180
6.2.2;12.2. Electromagnetic Energy and the Poynting Theorem;183
6.2.3;12.3. Vector and Scalar Potentials;184
6.2.4;12.4. Retarded Potentials;185
6.2.5;12.5. Multipole Expansion;188
6.3;Electromagnetic Radiation;192
6.3.1;13.1. Dipole Antenna;192
6.3.2;13.2. Electric Dipole Radiation;192
6.3.3;13.3. The Hertz Vector;196
6.3.4;13.4. A Half-Wave Antenna;200
6.3.5;13.5. A Loop Antenna;201
6.3.6;13.6. Plane Waves in Free Space;203
6.4;The Special Theory of Relativity;207
6.4.1;14.1. Newton's Laws of Mechanics;207
6.4.2;14.2. The Michelson-Morley Experiment;208
6.4.3;14.3. The Lorentz Transformation;210
6.4.4;14.4. Velocity and Acceleration in Four-Dimensional Space;212
6.4.5;14.5. Relativistic Equation of Motion;214
6.4.6;14.6. The Electromagnetic Field in Four-Dimensional Space;216
6.5;Waves and Boundary Problems;222
6.5.1;15.1. Skin Depths;222
6.5.2;15.2. Plane Electromagnetic Waves in a Conducting Medium;224
6.5.3;15.3. Boundary Conditions for Propagating Waves;226
6.5.4;15.4. Reflection from a Conducting Boundary;227
6.5.5;15.5. Dielectric Boundaries;229
6.5.6;15.6. The Fresnel Formula;231
6.6;Guided Waves;234
6.6.1;16.1. Propagation Between Parallel Conducting Plates;234
6.6.2;16.2. Uniform Waveguides;237
6.6.3;16.3. Examples of Waveguides;241
7;Coherent Waves and Radiation Quanta;248
7.1;Waveguide Transmission;249
7.1.1;17.1. Orthogonality Relations of Waveguide Modes;249
7.1.2;17.2. Impedances;251
7.1.3;17.3. Power Transmission Through a Waveguide;255
7.1.4;17.4. Multiple Reflections in a Waveguide;256
7.2;Resonant Cavities;259
7.2.1;18.1. SlaterÌs Theory of Normal Modes;259
7.2.2;18.2. The Maxwell Equations in a Cavity;262
7.2.3;18.3. Free and Damped Oscillations;264
7.2.4;18.4. Input Impedance of a Cavity;266
7.2.5;18.5. Example of a Resonant Cavity;269
7.2.6;18.6. Measurements of a Cavity Resonance;271
7.3;Electronic Excitation of Cavity Oscillations;274
7.3.1;19.1. Electronic Admittance;274
7.3.2;19.2. A Klystron Cavity;276
7.3.3;19.3. Velocity Modulation;280
7.3.4;19.4. A Reflex Oscillator;282
7.4;Dielectric and Magnetic Responses in Resonant Electromagnetic Fields;286
7.4.1;20.1. Introduction;286
7.4.2;20.2. The Kramers-Krönig Formula;287
7.4.3;20.3. Dielectric Relaxation;289
7.4.4;20.4. Magnetic Resonance;294
7.4.5;20.5. The Bloch Theory;296
7.4.6;20.6. Magnetic Susceptibility Measured by Resonance Experiments;298
7.5;Laser Oscillations, Phase Coherence, and Photons;300
7.5.1;21.1. Optical Resonators;300
7.5.2;21.2. Quantum Transitions;302
7.5.3;21.3. Inverted Population and the Negative Temperature;305
7.5.4;21.4. Ammonium Maser;306
7.5.5;21.5. Coherent Light Emission from a Gas Laser;307
7.5.6;21.6. Phase Coherence and Radiation Quanta;308
8;Appendix;310
9;Mathematical Notes;311
9.1;A.1. Orthogonal Vector Space;311
9.2;A.2. Orthogonality of Legendre's Polynomials;312
9.3;A.3. Associated Legendre Polynomials;314
9.4;A.4. Fourier Expansion and Wave Equations;316
9.5;A.5. Bessel's Functions;318
10;References;321
11;Index;322




