E-Book, Englisch, 361 Seiten, eBook
Reihe: Universitext
Fuhrmann A Polynomial Approach to Linear Algebra
Erscheinungsjahr 2012
ISBN: 978-1-4419-8734-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 361 Seiten, eBook
Reihe: Universitext
ISBN: 978-1-4419-8734-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
1 Preliminaries.- 1.1 Maps.- 1.2 Groups.- 1.3 Rings and Fields.- 1.4 Modules.- 1.5 Exercises.- 1.6 Notes and Remarks.- 2 Linear Spaces.- 2.1 Linear Spaces.- 2.2 Linear Combinations.- 2.3 Subspaces.- 2.4 Linear Dependence and Independence.- 2.5 Subspaces and Bases.- 2.6 Direct Sums.- 2.7 Quotient Spaces.- 2.8 Coordinates.- 2.9 Change of Basis Transformations.- 2.10 Lagrange Interpolation.- 2.11 Taylor Expansion.- 2.12 Exercises.- 2.13 Notes and Remarks.- 3 Determinants.- 3.1 Basic Properties.- 3.2 Cramer’s Rule.- 3.3 The Sylvester Resultant.- 3.4 Exercises.- 3.5 Notes and Remarks.- 4 Linear Transformations.- 4.1 Linear Transformations.- 4.2 Matrix Representations.- 4.3 Linear Punctionals and Duality.- 4.4 The Adjoint Transformation.- 4.5 Polynomial Module Structure on Vector Spaces.- 4.6 Exercises.- 4.7 Notes and Remarks.- 5 The Shift Operator.- 5.1 Basic Properties.- 5.2 Circulant Matrices.- 5.3 Rational Models.- 5.4 The Chinese Remainder Theorem.- 5.5 Hermite Interpolation.- 5.6 Duality.- 5.7 Reproducing Kernels.- 5.8 Exercises.- 5.9 Notes and Remarks.- 6 Structure Theory of Linear Transformations.- 6.1 Cyclic Transformations.- 6.2 The Invariant Factor Algorithm.- 6.3 Noncychc Transformations.- 6.4 Diagonalization.- 6.5 Exercises.- 6.6 Notes and Remarks.- 7 Inner Product Spaces.- 7.1 Geometry of Inner Product Spaces.- 7.2 Operators in Inner Product Spaces.- 7.3 Unitary Operators.- 7.4 Self-Adjoint Operators.- 7.5 Singular Vectors and Singular Values.- 7.6 Unitary Embeddings.- 7.7 Exercises.- 7.8 Notes and Remarks.- 8 Quadratic Forms.- 8.1 Preliminaries.- 8.2 Sylvester’s Law of Inertia.- 8.3 Hankel Operators and Forms.- 8.4 Bezoutians.- 8.5 Representation of Bezoutians.- 8.6 Diagonalization of Bezoutians.- 8.7 Bezout and Hankel Matrices.- 8.8 Inversion of HankelMatrices.- 8.9 Continued Fractions and Orthogonal Polynomials.- 8.10 The Cauchy Index.- 8.11 Exercises.- 8.12 Notes and Remarks.- 9 Stability.- 9.1 Root Location Using Quadratic Forms.- 9.2 Exercises.- 9.3 Notes and Remarks.- 10 Elements of System Theory.- 10.1 Introduction.- 10.2 Systems and Their Representations.- 10.3 Realization Theory.- 10.4 Stabilization.- 10.5 The Youla-Kucera Parametrization.- 10.6 Exercises.- 10.7 Notes and Remarks.- 11 Hankel Norm Approximation.- 11.1 Introduction.- 11.2 Preliminaries.- 11.3 Schmidt Pairs of Hankel Operators.- 11.4 Duality and Hankel Norm Approximation.- 11.5 Nevanhnna-Pick Interpolation.- 11.6 Hankel Approximant Singular Values.- 11.7 Exercises.- 11.8 Notes and Remarks.- Reference.