Fürstner / Hall / Marek | Science of Synthesis Knowledge Updates 2012 Vol. 4 | E-Book | sack.de
E-Book

E-Book, Englisch, 548 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

Fürstner / Hall / Marek Science of Synthesis Knowledge Updates 2012 Vol. 4

E-Book, Englisch, 548 Seiten, PDF, Format (B × H): 170 mm x 240 mm

Reihe: Science of Synthesis

ISBN: 978-3-13-178861-0
Verlag: Thieme
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Science of Synthesis is a reference work for preparative
methods in synthetic chemistry. Its product-based classification system enables
chemists to easily find solutions to their synthetic problems.

Key Features:

- Critical selection of reliable synthetic methods,
saving the researcher the time required to find procedures in the primary
literature. - Expertise provided by leading chemists. - Detailed experimental procedures. - The information is highly organized in a
logical format to allow easy access to the relevant
information.

The Science of Synthesis Editorial Board, together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.
Fürstner / Hall / Marek Science of Synthesis Knowledge Updates 2012 Vol. 4 jetzt bestellen!

Zielgruppe


Wissenschaftler

Weitere Infos & Material


1;Science of Synthesis: Knowledge Updates 2012/4;1
1.1;Title page;5
1.2;Imprint;7
1.3;Preface;8
1.4;Abstracts;10
1.5;Overview;16
1.6;Table of Contents;18
1.7;Volume 1: Compounds with Transition Metal--Carbon p-Bonds and Compounds of Groups 10–8 (Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os);30
1.7.1;1.2 Product Class 2: Organometallic Complexes of Palladium;30
1.7.1.1;1.2.5 Product Subclass 5: Palladium(III)-Containing Complexes;30
1.7.1.1.1;1.2.5.1 Synthesis of Palladium(III)-Containing Complexes;30
1.7.1.1.1.1;1.2.5.1.1 Mononuclear Palladium(III) Complexes;30
1.7.1.1.1.1.1;1.2.5.1.1.1 Method 1: Disproportionation of Palladium(II) Complexes;31
1.7.1.1.1.1.2;1.2.5.1.1.2 Method 2: Oxidation of Palladium(II) Complexes with Perchloric Acid;31
1.7.1.1.1.1.3;1.2.5.1.1.3 Method 3: Electrochemical Oxidation of Palladium(II) Complexes;32
1.7.1.1.1.1.4;1.2.5.1.1.4 Method 4: Oxidation of Palladium(II) with Single-Electron Oxidants;33
1.7.1.1.1.1.5;1.2.5.1.1.5 Method 5: Oxidation of Palladium(II) Complexes with Oxygen;33
1.7.1.1.1.2;1.2.5.1.2 Binuclear Palladium(III) Complexes without a Pd--Pd Bond;34
1.7.1.1.1.2.1;1.2.5.1.2.1 Method 1: Electrochemical Oxidation;34
1.7.1.1.1.2.2;1.2.5.1.2.2 Method 2: Comproportionation of Palladium(II) and Palladium(IV) Complexes;35
1.7.1.1.1.3;1.2.5.1.3 Binuclear Palladium(2.5) Complexes with a Pd--Pd Bond Order of 0.5;36
1.7.1.1.1.3.1;1.2.5.1.3.1 Method 1: Binuclear Palladium(2.5) Complexes by Electrochemical Oxidation;36
1.7.1.1.1.3.2;1.2.5.1.3.2 Method 2: Binuclear Palladium(2.5) Complexes Using Single-Electron Oxidants;37
1.7.1.1.1.4;1.2.5.1.4 Tetrabridged Binuclear Palladium(III) Complexes with a Pd--Pd Bond;38
1.7.1.1.1.4.1;1.2.5.1.4.1 Method 1: Binuclear Palladium(III) Complexes by Oxidation with Hypervalent Iodine;38
1.7.1.1.1.4.2;1.2.5.1.4.2 Method 2: Inorganic Binuclear Palladium(III) Complexes via Ligand Metathesis;39
1.7.1.1.1.4.3;1.2.5.1.4.3 Method 3: Organometallic Tetrabridged Binuclear Palladium(III) Complexes;39
1.7.1.1.1.5;1.2.5.1.5 Binuclear Palladium(III) Complexes Supported by Two Bridging Ligands;41
1.7.1.1.1.5.1;1.2.5.1.5.1 Method 1: Oxidation with Hypervalent Iodine Reagents;41
1.7.1.1.1.5.2;1.2.5.1.5.2 Method 2: Oxidation with Peroxides;42
1.7.1.1.1.5.3;1.2.5.1.5.3 Method 3: Oxidation with Halogens;42
1.7.1.1.1.6;1.2.5.1.6 Unbridged Pd(III)--Pd(III) Bonds;43
1.7.1.1.1.6.1;1.2.5.1.6.1 Method 1: Oxidation of Acetate-Bridged Binuclear Palladium(III) Complexes with Xenon Difluoride;43
1.7.1.1.2;1.2.5.2 Stoichiometric Organometallic Chemistry of Isolated Palladium(III) Complexes;45
1.7.1.1.2.1;1.2.5.2.1 Organometallic Chemistry of Mononuclear Palladium(III) Complexes;45
1.7.1.1.2.1.1;1.2.5.2.1.1 Method 1: C--C Bond-Forming Reactions of Mononuclear Palladium(III) Complexes;45
1.7.1.1.2.1.2;1.2.5.2.1.2 Method 2: C--C Bond-Forming Reactions Initiated by Ligation of Anionic Donors;47
1.7.1.1.2.2;1.2.5.2.2 Organometallic Chemistry of Binuclear Palladium(III) Complexes;48
1.7.1.1.2.2.1;1.2.5.2.2.1 Method 1: C--X Bimetallic Reductive Elimination from Binuclear Palladium(III) Complexes;48
1.7.1.1.3;1.2.5.3 Organometallic Reactions Proposed To Proceed via Unobserved Mononuclear Palladium(III) Intermediates;48
1.7.1.1.3.1;1.2.5.3.1 Method 1: C--C Bond-Forming Reactions Initiated by One-Electron Oxidation of Mononuclear Palladium(II) Complexes;48
1.7.1.1.3.2;1.2.5.3.2 Method 2: Oxygen-Insertion Reactions;49
1.7.1.1.4;1.2.5.4 Binuclear Palladium(III) in the Synthesis of Mononuclear Palladium(IV) Complexes;51
1.7.1.1.4.1;1.2.5.4.1 Method 1: Pd--Pd Heterolysis in Trifluoromethylation;51
1.7.1.1.4.2;1.2.5.4.2 Method 2: Heterolysis of Unbridged Pd(III)--Pd(III) Bonds;52
1.7.1.1.5;1.2.5.5 Proposed Catalysis via Mononuclear Palladium(III) Intermediates;53
1.7.1.1.5.1;1.2.5.5.1 Method 1: Kharasch Reaction;53
1.7.1.1.6;1.2.5.6 Catalysis via Proposed Binuclear Palladium(III) Intermediates;54
1.7.1.1.6.1;1.2.5.6.1 Method 1: Binuclear Palladium(III) Intermediates in C--H Arylation;54
1.7.1.1.6.2;1.2.5.6.2 Method 2: Binuclear Palladium(III) Intermediates in C--H Chlorination;54
1.7.1.1.6.3;1.2.5.6.3 Method 3: Binuclear Palladium(III) Complexes in C--H Acetoxylation;55
1.7.1.1.6.4;1.2.5.6.4 Method 4: C--N Bond-Forming Reactions Initiated by One-Electron Oxidants;56
1.7.1.1.6.5;1.2.5.6.5 Method 5: Binuclear Catalysts for C--H Hydroxylation Chemistry;57
1.7.1.1.7;1.2.5.7 Binuclear Palladium(III) Precatalysts;58
1.7.1.1.7.1;1.2.5.7.1 Method 1: Alkene Diboration;58
1.8;Volume 2: Compounds of Groups 7–3 (Mn···, Cr···, V···, Ti···, Sc···, La···, Ac···);62
1.8.1;2.10 Product Class 10: Organometallic Complexes of Titanium;62
1.8.1.1;2.10.20 Organometallic Complexes of Titanium (Update 2);62
1.8.1.1.1;2.10.20.1 Titanium-Mediated Reductive Cross-Coupling Reactions (Intermolecular Metallacycle-Mediated C--C Bond Formation);62
1.8.1.1.1.1;2.10.20.1.1 Method 1: Synthesis of Allylic Alcohols by Alkoxide-Directed Regioselective Coupling of Internal Alkynes with Aldehydes (Class I);65
1.8.1.1.1.2;2.10.20.1.2 Method 2: Synthesis of Trisubstituted E-1,3-Dienes by Alkoxide-Directed Regioselective Coupling of Internal Alkynes with Terminal Alkynes (Class I);71
1.8.1.1.1.3;2.10.20.1.3 Method 3: Synthesis of Tetrasubstituted 1,3-Dienes by Alkoxide-Directed Regioselective Cross-Coupling Reactions of Internal Alkynes (Class II);75
1.8.1.1.1.4;2.10.20.1.4 Method 4: Titanium Alkoxide Mediated Alkene–Alkyne Cross Coupling (Class II);78
1.8.1.1.1.5;2.10.20.1.5 Method 5: Titanium Alkoxide Mediated Allylic Alcohol–Alkyne Cross Coupling (Class II);82
1.8.1.1.1.6;2.10.20.1.6 Method 6: Alkoxide-Directed Coupling of Allylic Alcohols with Vinylsilanes (Class II);91
1.8.1.1.1.7;2.10.20.1.7 Method 7: Alkoxide-Directed Coupling of Imines with Internal Alkynes (Class II);93
1.8.1.1.1.8;2.10.20.1.8 Method 8: Alkoxide-Directed Coupling of Imines with Alkenes (Class II);97
1.8.1.1.1.9;2.10.20.1.9 Method 9: Alkoxide-Directed Coupling of Imines with Allylic Alcohols (Class II);108
1.8.1.1.1.10;2.10.20.1.10 Method 10: Allenes in Alkoxide-Directed Titanium-Mediated Reductive Cross Coupling (Class II);116
1.8.1.1.1.11;2.10.20.1.11 Method 11: Alkoxide-Directed Coupling of Vinylcyclopropanes with Silyl-Substituted Ethene and Alkynes (Class II);121
1.8.1.1.1.12;2.10.20.1.12 Method 12: Titanium-Mediated Cyclopropanation of Vinylogous Esters (Class I Alkoxide-Directed Reductive Cross Coupling);122
1.8.2;2.13 Product Class 13: Organometallic Complexes of the Actinides;128
1.8.2.1;2.13.1 Product Subclass 1: Actinide–Cyclooctatetraene Complexes;129
1.8.2.1.1;Synthesis of Product Subclass 1;129
1.8.2.1.1.1;2.13.1.1 Method 1: Metathesis with Alkali Metal Salts;129
1.8.2.1.1.2;2.13.1.2 Method 2: Transmetalation with Magnesium Salts;131
1.8.2.1.1.3;2.13.1.3 Method 3: Electrolytic Amalgamation;131
1.8.2.1.1.4;2.13.1.4 Method 4: Reduction with Lithium Naphthalenide;132
1.8.2.1.1.5;2.13.1.5 Method 5: Redistribution;132
1.8.2.1.1.6;2.13.1.6 Method 6: Cyclooctatetraene-Bridged Actinide Complexes;133
1.8.2.1.2;Applications of Product Subclass 1 in Organic Synthesis;134
1.8.2.1.2.1;2.13.1.7 Method 7: Binding of Carbon Monoxide;134
1.8.2.2;2.13.2 Product Subclass 2: Actinide–Arene Complexes;136
1.8.2.2.1;Synthesis of Product Subclass 2;136
1.8.2.2.1.1;2.13.2.1 Method 1: Friedel–Crafts Route;136
1.8.2.2.1.2;2.13.2.2 Method 2: Synthesis of Bimetallic Species;137
1.8.2.2.1.3;2.13.2.3 Method 3: Thermolysis of Uranium(IV) Borohydride;137
1.8.2.2.1.4;2.13.2.4 Method 4: Synthesis of Bridged Uranium–Arene Complexes by Salt Metathesis;138
1.8.2.3;2.13.3 Product Subclass 3: Actinide–Cyclopentadienyl Complexes;139
1.8.2.3.1;Synthesis of Product Subclass 3;142
1.8.2.3.1.1;2.13.3.1 Method 1: Metathesis with Alkali Metal Salts;142
1.8.2.3.1.2;2.13.3.2 Method 2: Transmetalation;143
1.8.2.3.1.3;2.13.3.3 Method 3: Reduction of Tetravalent Actinide Precursors;144
1.8.2.3.1.3.1;2.13.3.3.1 Variation 1: Reduction with Sodium Hydride;144
1.8.2.3.1.3.2;2.13.3.3.2 Variation 2: Reduction with Alkali Metals;145
1.8.2.3.1.4;2.13.3.4 Method 4: Reaction with Tetramethylfulvene;146
1.8.2.3.2;Applications of Product Subclass 3 in Organic Synthesis;147
1.8.2.3.2.1;2.13.3.5 Method 5: Catalytic Reduction of Azides and Hydrazines;147
1.8.2.3.2.2;2.13.3.6 Method 6: Intermolecular Hydroamination of Terminal Alkynes;148
1.8.2.3.2.3;2.13.3.7 Method 7: Hydrosilylation of Terminal Alkynes;150
1.8.2.3.2.4;2.13.3.8 Method 8: Polymerization of a-Alkenes;152
1.8.2.3.2.5;2.13.3.9 Method 9: C--H Bond Activation;153
1.8.2.4;2.13.4 Product Subclass 4: Allyl- and Pentadienylactinide Complexes;154
1.8.2.4.1;Synthesis of Product Subclass 4;155
1.8.2.4.1.1;2.13.4.1 Method 1: Transmetalation with Grignard Reagents;155
1.8.2.4.1.2;2.13.4.2 Method 2: Metathesis with Alkali Metal Salts;156
1.8.2.5;2.13.5 Product Subclass 5: Alkylactinide Complexes;156
1.8.2.5.1;Synthesis of Product Subclass 5;157
1.8.2.5.1.1;2.13.5.1 Method 1: Metathesis with Alkali Metal Salts;157
1.8.2.5.1.2;2.13.5.2 Method 2: Application of Stabilizing Phosphine Ancillary Ligands;157
1.8.2.6;2.13.6 Product Subclass 6: Actinide–Carbene Complexes;158
1.8.2.6.1;Synthesis of Product Subclass 6;159
1.8.2.6.1.1;2.13.6.1 Method 1: Metathesis with Alkali Metal Salts;159
1.8.2.6.1.2;2.13.6.2 Method 2: Ligand Redistribution;160
1.8.2.7;2.13.7 Product Subclass 7: Oxygen-Ligand Complexes of Actinide Systems;161
1.8.2.7.1;Synthesis of Product Subclass 7;161
1.8.2.7.1.1;2.13.7.1 Method 1: Ligand Substitution;161
1.8.2.7.1.1.1;2.13.7.1.1 Variation 1: Nucleophilic Displacement of Halides;161
1.8.2.7.1.1.2;2.13.7.1.2 Variation 2: By Ligand Redistribution;162
1.8.2.7.2;Applications of Product Subclass 7 in Organic Synthesis;164
1.8.2.7.2.1;2.13.7.2 Method 2: Molecular Nitrogen Reduction;164
1.8.2.8;2.13.8 Product Subclass 8: Nitrogen-Ligand Complexes of Actinide Systems;165
1.8.2.8.1;Synthesis of Product Subclass 8;165
1.8.2.8.1.1;2.13.8.1 Method 1: Formation of Actinide Amide Complexes;165
1.8.2.8.1.1.1;2.13.8.1.1 Variation 1: Homoleptic Actinide Amide Formation by Nucleophilic Halide Displacement;165
1.8.2.8.1.1.2;2.13.8.1.2 Variation 2: Heteroleptic Actinide Amide Synthesis by Nucleophilic Halide Displacement;167
1.8.2.8.1.1.3;2.13.8.1.3 Variation 3: Reaction of Organoactinide Species with Nitriles and Thiocyanates;170
1.8.2.8.1.2;2.13.8.2 Method 2: Formation of Actinide Imides;173
1.8.2.8.1.2.1;2.13.8.2.1 Variation 1: By Oxidation of the Actinide Center;173
1.8.2.8.1.2.2;2.13.8.2.2 Variation 2: By Reductive Cleavage with Amines and Hydrazines;175
1.8.2.8.1.2.3;2.13.8.2.3 Variation 3: By Reductive Cleavage with Azides and Diazenes;176
1.8.2.8.1.3;2.13.8.3 Method 3: Synthesis of Actinide Amidinate Complexes;178
1.8.2.8.1.3.1;2.13.8.3.1 Variation 1: By Reaction of Actinide Halides with Lithium Amidinates;178
1.8.2.8.1.3.2;2.13.8.3.2 Variation 2: By Carbodiimide Insertion;180
1.8.2.8.1.4;2.13.8.4 Method 4: Synthesis of Actinide Complexes Bearing N-Heterocyclic Ligands;182
1.8.2.8.1.4.1;2.13.8.4.1 Variation 1: Actinide Complexes Bearing Pyrrolyl Ligands and Polypyrrole Macrocycles;182
1.8.2.8.1.4.2;2.13.8.4.2 Variation 2: Organoactinide Complexes Bearing Pyrazole and Imidazole Functionality;184
1.8.2.8.1.4.3;2.13.8.4.3 Variation 3: Pyridine-Stabilized Organoactinide Systems;185
1.8.2.8.1.5;2.13.8.5 Method 5: Actinide Complexes Bearing Ketimide Ligands;187
1.8.2.8.2;Applications of Product Subclass 8 in Organic Synthesis;188
1.8.2.8.2.1;2.13.8.6 Method 6: Binding of Carbon Dioxide;188
1.8.2.8.2.2;2.13.8.7 Method 7: Oligomerization of e-Caprolactone;189
1.8.2.8.2.3;2.13.8.8 Method 8: Dehydrogenative Coupling of Amines with Silanes;190
1.8.2.8.2.4;2.13.8.9 Method 9: Catalytic Hydrosilylation of Alkynes;191
1.8.2.8.2.5;2.13.8.10 Method 10: Binding of Molecular Nitrogen;192
1.8.2.8.2.6;2.13.8.11 Method 11: Alkene Polymerization;193
1.8.2.9;2.13.9 Product Subclass 9: Sulfur- and Phosphorus-Ligand Complexes of Actinide Systems;194
1.8.2.9.1;Synthesis of Product Subclass 9;194
1.8.2.9.1.1;2.13.9.1 Method 1: Synthesis of Organoactinide Complexes Bearing Sulfur Ligands;194
1.8.2.9.1.1.1;2.13.9.1.1 Variation 1: Formation of Actinide Thiolate Complexes by Coordinative Insertion;194
1.8.2.9.1.1.2;2.13.9.1.2 Variation 2: Formation of Actinide Thiolate Complexes by Nucleophilic Halide Displacement;195
1.8.2.9.1.2;2.13.9.2 Method 2: Synthesis of Organoactinide Complexes Bearing Phosphorus Ligands;196
1.8.2.9.1.2.1;2.13.9.2.1 Variation 1: Formation of Actinide–Phospholyl Complexes;196
1.8.2.9.1.2.2;2.13.9.2.2 Variation 2: Reactions Forming Actinide–Phosphine Complexes;197
1.8.2.9.1.2.3;2.13.9.2.3 Variation 3: Reactions Forming Actinide–Phosphine Oxide Complexes;198
1.8.2.9.1.2.4;2.13.9.2.4 Variation 4: Reactions Forming Actinide–Phosphoranimide Complexes;199
1.8.2.10;2.13.10 Product Subclass 10: Organoactinide Complexes Bearing Bridged Ligands;200
1.8.2.10.1;Synthesis of Product Subclass 10;201
1.8.2.10.1.1;2.13.10.1 Method 1: Organoactinide Complexes Bearing Bridged Ligands;201
1.8.2.10.1.1.1;2.13.10.1.1 Variation 1: Carbon-Bridged Ancillary Ligand Complexes of the Actinides;201
1.8.2.10.1.1.2;2.13.10.1.2 Variation 2: Nitrogen-Bridged Ancillary Ligand Complexes of the Actinides;203
1.8.2.10.1.1.3;2.13.10.1.3 Variation 3: Oxygen-Bridged Ancillary Ligand Complexes of the Actinides;206
1.8.2.10.1.1.4;2.13.10.1.4 Variation 4: Silicon-Bridged Ancillary Ligand Complexes of the Actinides;207
1.8.2.10.2;Applications of Product Subclass 10 in Organic Synthesis;209
1.8.2.10.2.1;2.13.10.2 Method 2: Catalytic Intramolecular Hydroamination/Cyclization Mediated by Constrained-Geometry Actinide Complexes;209
1.8.2.10.2.2;2.13.10.3 Method 3: Intermolecular Hydrosilylation with Phenylsilane Mediated by Constrained-Geometry Thorium Complexes;211
1.8.2.10.2.3;2.13.10.4 Method 4: Intermolecular Hydrothiolation;214
1.8.2.11;2.13.11 Product Subclass 11: Multimetallic Actinide Complexes;215
1.8.2.11.1;Synthesis of Product Subclass 11;215
1.8.2.11.1.1;2.13.11.1 Method 1: Homobimetallic Actinide Complexes;215
1.8.2.11.1.1.1;2.13.11.1.1 Variation 1: Nitrogen-Bridged Homobimetallic Actinide Complexes;215
1.8.2.11.1.1.2;2.13.11.1.2 Variation 2: Halogen-Bridged Homobimetallic Actinide Complexes;217
1.8.2.11.1.1.3;2.13.11.1.3 Variation 3: Oxygen-Bridged Homobimetallic Complexes;218
1.8.2.11.1.1.4;2.13.11.1.4 Variation 4: Carbide-Bridged Homobimetallic Actinide Complexes;220
1.8.2.11.1.2;2.13.11.2 Method 2: Heterobimetallic Complexes;220
1.8.2.11.1.2.1;2.13.11.2.1 Variation 1: Hydride-Bridged Heterobimetallic Complexes;221
1.8.2.11.1.2.2;2.13.11.2.2 Variation 2: Phosphorus-Bridged Heterobimetallic Actinide Complexes;222
1.8.2.11.1.2.3;2.13.11.2.3 Variation 3: Heterobimetallic Actinide–Ferrocenyl Complexes;222
1.8.2.11.1.2.4;2.13.11.2.4 Variation 4: Heterobimetallic Actinide Complexes with Unsupported Metal--Metal Bonds;223
1.8.2.11.1.2.5;2.13.11.2.5 Variation 5: Heterobimetallic Nitrogen-Bridged Actinide Complexes;224
1.8.2.11.2;Applications of Product Subclass 11 in Organic Synthesis;225
1.8.2.11.2.1;2.13.11.3 Method 3: Reversible Carbon--Carbon Coupling;225
1.8.2.11.2.2;2.13.11.4 Method 4: Inter- and Intramolecular Hydroamination;227
1.8.2.11.2.3;2.13.11.5 Method 5: s-Bond Metathesis of Silylalkynes;229
1.9;Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds;242
1.9.1;4.4 Product Class 4: Silicon Compounds;242
1.9.1.1;4.4.3 Product Subclass 3: Silylenes;242
1.9.1.1.1;Synthesis of Product Subclass 3;244
1.9.1.1.1.1;4.4.3.1 Method 1: Reduction of Dihalosilanes;244
1.9.1.1.1.2;4.4.3.2 Method 2: Reduction of Trichlorosilanes or Silicon Tetrachloride;256
1.9.1.1.1.3;4.4.3.3 Method 3: Reaction of a Silyliumylidene Cation;258
1.9.1.1.1.4;4.4.3.4 Method 4: Dehydrochlorination of Hydrochlorosilanes;260
1.9.1.1.2;Applications of Product Subclass 3 in Organic Synthesis;263
1.9.1.1.2.1;4.4.3.5 Method 5: Insertion Reactions;263
1.9.1.1.2.2;4.4.3.6 Method 6: Addition Reactions to 1,3-Dienes;284
1.9.1.1.2.3;4.4.3.7 Method 7: Addition Reactions to Aldehydes, Ketones, and Imines;289
1.9.1.1.2.4;4.4.3.8 Method 8: Addition Reactions to Alkynes and Cyanides;293
1.9.1.1.2.5;4.4.3.9 Method 9: Addition Reactions to Isocyanides and Azides;295
1.9.1.1.2.6;4.4.3.10 Method 10: Addition Reactions to Alkenes and Silenes;301
1.9.1.1.2.7;4.4.3.11 Method 11: Reactions with Carbenes and 4-(Dimethylamino)pyridine;302
1.9.1.1.2.8;4.4.3.12 Method 12: Reactions with Elemental Chalcogens or Phosphorus;303
1.9.1.1.2.9;4.4.3.13 Method 13: Reactions with Transition Metals;310
1.10;Volume 6: Boron Compounds;326
1.10.1;6.1 Product Class 1: Boron Compounds;326
1.10.1.1;6.1.28.24 Vinylboranes;326
1.10.1.1.1;6.1.28.24.1 Synthesis of Vinylboranes;326
1.10.1.1.1.1;6.1.28.24.1.1 Method 1: Insertion of Borylenes into C--H Bonds;327
1.10.1.1.1.2;6.1.28.24.1.2 Method 2: Dimetalation of Allenes and Alkynes;327
1.10.1.1.1.2.1;6.1.28.24.1.2.1 Variation 1: Palladium-Catalyzed Enantioselective Diboration of Allenes;327
1.10.1.1.1.2.2;6.1.28.24.1.2.2 Variation 2: Silaboration of Alkynes;329
1.10.1.1.1.2.3;6.1.28.24.1.2.3 Variation 3: Silaboration of Allenes;331
1.10.1.1.1.2.4;6.1.28.24.1.2.4 Variation 4: Silaborative C--C Cleavage Reactions of Methylenecyclopropanes;335
1.10.1.1.1.2.5;6.1.28.24.1.2.5 Variation 5: Copper-Catalyzed Addition of Diboron Reagents to Alkynes;337
1.10.1.1.1.3;6.1.28.24.1.3 Method 3: Transmetalation of Vinylic Metal Complexes with Boron Reagents;339
1.10.1.1.1.3.1;6.1.28.24.1.3.1 Variation 1: Copper Hydride Catalyzed Addition of Pinacolborane to Acetylenic Esters;339
1.10.1.1.1.3.2;6.1.28.24.1.3.2 Variation 2: Transmetalation of Vinylaluminums;340
1.10.1.1.1.3.3;6.1.28.24.1.3.3 Variation 3: Transmetalation of Cyclic Vinyllithium Compounds;342
1.10.1.1.1.3.4;6.1.28.24.1.3.4 Variation 4: Palladium-Catalyzed Borylation of Vinyl Halides;342
1.10.1.1.1.4;6.1.28.24.1.4 Method 4: Carboboration of Alkynes;342
1.10.1.1.1.5;6.1.28.24.1.5 Method 5: Miscellaneous Methods;345
1.10.1.1.1.5.1;6.1.28.24.1.5.1 Variation 1: Protodeboronation of Alkenyl Geminal Diboron Species;345
1.10.1.1.1.5.2;6.1.28.24.1.5.2 Variation 2: Stereoselective Synthesis of Tetrasubstituted Vinylboronates;346
1.10.1.1.2;6.1.28.24.2 Applications of Vinylboranes in Organic Synthesis;347
1.10.1.1.2.1;6.1.28.24.2.1 Method 1: Reduction of Double Bonds;347
1.10.1.1.2.2;6.1.28.24.2.2 Method 2: Synthesis of Cyclopropylboronates and Oxiran-2-ylboronates;348
1.10.1.1.2.3;6.1.28.24.2.3 Method 3: Cycloadditions;350
1.10.1.1.2.4;6.1.28.24.2.4 Method 4: Heck Reactions;352
1.10.1.1.2.5;6.1.28.24.2.5 Method 5: Substitution Reactions;353
1.10.1.1.2.5.1;6.1.28.24.2.5.1 Variation 1: Vinylogous Intramolecular Alkyl-Transfer Reactions;353
1.10.1.1.2.5.2;6.1.28.24.2.5.2 Variation 2: Reactions of Borylated Allylic Reagents;354
1.10.1.1.2.6;6.1.28.24.2.6 Method 6: Formation of Carbon--Halogen Bonds;357
1.10.1.1.2.6.1;6.1.28.24.2.6.1 Variation 1: Formation of a C--Cl Bond through Iodination of a Double Bond;357
1.10.1.1.2.6.2;6.1.28.24.2.6.2 Variation 2: Fluorination through Tandem Transmetalation–Fluorination;358
1.10.1.1.2.7;6.1.28.24.2.7 Method 7: Formation of C--N Bonds;359
1.10.1.1.2.7.1;6.1.28.24.2.7.1 Variation 1: Chan–Lam–Evans Cross Coupling;359
1.10.1.1.2.7.2;6.1.28.24.2.7.2 Variation 2: Formation of Imines;359
1.10.1.1.2.8;6.1.28.24.2.8 Method 8: Formation of C--O Bonds;360
1.10.1.1.2.9;6.1.28.24.2.9 Method 9: Formation of C--S and C--Se Bonds;361
1.10.1.1.2.10;6.1.28.24.2.10 Method 10: Addition to Heteroatom--Carbon Double Bonds;362
1.10.1.1.2.11;6.1.28.24.2.11 Method 11: Addition to Carbon--Carbon Multiple Bonds;364
1.10.1.1.2.12;6.1.28.24.2.12 Method 12: Homocoupling of Vinylboranes;364
1.10.1.1.2.13;6.1.28.24.2.13 Method 13: Cross Coupling of Vinylboranes;365
1.11;Volume 9: Fully Unsaturated Small-Ring Heterocycles and Monocyclic Five-Membered Hetarenes with One Heteroatom;370
1.11.1;9.14 Product Class 14: Phospholes;370
1.11.1.1;9.14.4 Phospholes;370
1.11.1.1.1;9.14.4.1 .3-1H-Phospholes;370
1.11.1.1.1.1;9.14.4.1.1 Synthesis by Ring-Closure Reactions;370
1.11.1.1.1.1.1;9.14.4.1.1.1 By Formation of Two P--C Bonds;370
1.11.1.1.1.1.1.1;9.14.4.1.1.1.1 Method 1: Reaction of Primary Phosphines with Diynes;370
1.11.1.1.1.1.2;9.14.4.1.1.2 By Formation of One C--C Bond;371
1.11.1.1.1.1.2.1;9.14.4.1.1.2.1 Method 1: Ring Closure of Dialk-1-ynylphosphines;371
1.11.1.1.1.2;9.14.4.1.2 Synthesis by Ring Transformation;372
1.11.1.1.1.2.1;9.14.4.1.2.1 Method 1: Reaction of Dihalophosphines with Zirconacyclopentadienes;372
1.11.1.1.1.2.1.1;9.14.4.1.2.1.1 Variation 1: Reaction of Zirconacyclopentadienes with Iodine, Butyllithium, and Dihalophosphines;373
1.11.1.1.1.2.1.2;9.14.4.1.2.1.2 Variation 2: Reaction of Zirconacyclopentadienes with Copper(I) Chloride and Dihalophosphines;374
1.11.1.1.1.2.1.3;9.14.4.1.2.1.3 Variation 3: Reaction of Dihalophosphines with Titanacyclopentadienes;374
1.11.1.1.1.3;9.14.4.1.3 Aromatization;375
1.11.1.1.1.3.1;9.14.4.1.3.1 Method 1: Dehydrohalogenation of 1-Halodihydrophospholium Ions;375
1.11.1.1.1.4;9.14.4.1.4 Synthesis by Substituent Modification;376
1.11.1.1.1.4.1;9.14.4.1.4.1 Method 1: Reaction of Electrophiles with Phospholide Ions;376
1.11.1.1.1.4.2;9.14.4.1.4.2 Method 2: Reaction of Nucleophiles with Phospholes;378
1.11.1.1.1.4.3;9.14.4.1.4.3 Method 3: Electrophilic Functionalization of Phospholes;380
1.11.1.1.1.4.4;9.14.4.1.4.4 Method 4: Transformation of a-Substituents;380
1.11.1.1.1.4.5;9.14.4.1.4.5 Method 5: Reduction of .5-Phospholes;382
1.11.1.1.2;9.14.4.2 Phospholide Ions;383
1.11.1.1.2.1;9.14.4.2.1 Method 1: Cleavage of the Exocyclic P--R Bond of 1H-Phospholes by Alkali Metals;383
1.11.1.1.2.1.1;9.14.4.2.1.1 Variation 1: Cleavage of the Exocyclic P--C Bond of 1H-Phospholes by Bases;383
1.11.1.1.2.1.2;9.14.4.2.1.2 Variation 2: Deprotonation of Transient 2H-Phospholes;384
1.11.1.1.3;9.14.4.3 .5-Phospholyl Complexes;386
1.11.1.1.3.1;9.14.4.3.1 Method 1: Synthesis from .3-1H-Phospholes;386
1.11.1.1.3.2;9.14.4.3.2 Method 2: Synthesis from .3-2H-Phospholes;387
1.11.1.1.3.3;9.14.4.3.3 Method 3: Synthesis from Phospholide Ions;387
1.11.1.1.3.3.1;9.14.4.3.3.1 Variation 1: Via Intermediate 1-Stannylphospholes;388
1.11.1.1.3.4;9.14.4.3.4 Method 4: Electrophilic Functionalization;388
1.11.1.1.3.5;9.14.4.3.5 Method 5: Transformation of Substituents;388
1.12;Volume 40: Amines, Ammonium Salts, Amine N-Oxides, Haloamines, Hydroxylamines and Sulfur Analogues, and Hydrazines;394
1.12.1;40.1 Product Class 1: Amino Compounds;394
1.12.1.1;40.1.1.5.6 Transition-Metal-Catalyzed Functionalization of C(sp3)--H Bonds of Amines;394
1.12.1.1.1;40.1.1.5.6.1 Transition-Metal-Catalyzed Oxidation of a-C(sp3)--H Bonds of Tertiary N-Methylamines and Amides;395
1.12.1.1.1.1;40.1.1.5.6.1.1 Method 1: Ruthenium-Catalyzed Oxidation of Tertiary Amines;395
1.12.1.1.1.2;40.1.1.5.6.1.2 Method 2: Palladium-Catalyzed Acetoxylation of tert-Butoxycarbonyl-Protected N-Methylamines;398
1.12.1.1.2;40.1.1.5.6.2 Transition-Metal-Catalyzed Cross-Dehydrogenative Coupling Reactions of C(sp3)--H Bonds at the a-Position of Amines;400
1.12.1.1.2.1;40.1.1.5.6.2.1 Method 1: Transition-Metal-Catalyzed Alkynylation of a-C(sp3)--H Bonds of Tertiary Amines;401
1.12.1.1.2.1.1;40.1.1.5.6.2.1.1 Variation 1: Synthesis of Propargylamines by Copper(I)-Catalyzed Alkynylation of Tertiary Amines;401
1.12.1.1.2.1.2;40.1.1.5.6.2.1.2 Variation 2: Alkynylation of Tertiary Amines Catalyzed by Iron(II) Chloride;404
1.12.1.1.2.2;40.1.1.5.6.2.2 Method 2: Synthesis of ß-Amino Ketones (Mannich Products) by Transition-Metal-Catalyzed C(sp3)--H Bond Functionalization;406
1.12.1.1.2.2.1;40.1.1.5.6.2.2.1 Variation 1: Synthesis of ß-Amino Ketones Catalyzed by Copper Salts;406
1.12.1.1.2.2.2;40.1.1.5.6.2.2.2 Variation 2: Synthesis of ß-Amino Ketones (Mannich Products) Catalyzed by a Combination of a Transition-Metal Catalyst and an Organocatalyst;409
1.12.1.1.2.2.3;40.1.1.5.6.2.2.3 Variation 3: Synthesis of ß-Amino Ketones (Mannich Products) by Aerobic Oxidative Coupling of Tertiary Amines with Silyl Enol Ethers and Ketene Acetals;412
1.12.1.1.2.3;40.1.1.5.6.2.3 Method 3: Nitro-Mannich (Aza-Henry) Reaction via C(sp3)--H Functionalization;414
1.12.1.1.2.3.1;40.1.1.5.6.2.3.1 Variation 1: Copper-Catalyzed Cross-Dehydrogenative Coupling of Tertiary Amines and Nitroalkanes;414
1.12.1.1.2.3.2;40.1.1.5.6.2.3.2 Variation 2: Aza-Henry and Mannich Reaction by Platinum-Catalyzed Cross-Dehydrogenative Coupling of Tertiary Amines in the Absence of Oxidant;416
1.12.1.1.2.3.3;40.1.1.5.6.2.3.3 Variation 3: Aza-Henry (Nitro-Mannich) Reactions in the Presence of Ruthenium Complexes via Visible Light Photoredox Catalyzed C(sp3)--H Functionalization;420
1.12.1.1.2.4;40.1.1.5.6.2.4 Method 4: Transition-Metal-Catalyzed Oxidative a-Cyanation of Tertiary Amines;425
1.12.1.1.2.4.1;40.1.1.5.6.2.4.1 Variation 1: Aerobic Oxidative a-Cyanation of Tertiary Amines with Sodium Cyanide/Acetic Acid;425
1.12.1.1.2.4.2;40.1.1.5.6.2.4.2 Variation 2: a-Cyanation of Tertiary Amines with Sodium Cyanide/Acetic Acid in the Presence of Hydrogen Peroxide or tert-Butyl Hydroperoxide;428
1.12.1.1.2.4.3;40.1.1.5.6.2.4.3 Variation 3: a-Cyanation of Tertiary Amines Catalyzed by Gold Complexes under Acid-Free Conditions;430
1.12.1.1.2.5;40.1.1.5.6.2.5 Method 5: Iron(III)-Catalyzed Oxidative Allylation of a C--H Bond Adjacent to a Nitrogen Atom: Synthesis of Homoallyl Tertiary Amines;434
1.12.1.1.2.6;40.1.1.5.6.2.6 Method 6: Copper-Catalyzed Aerobic Phosphonation of C(sp3)--H Bonds;437
1.12.1.1.2.7;40.1.1.5.6.2.7 Method 7: Transition-Metal-Catalyzed (Het)Arylation of C(sp3)--H Bonds Adjacent to Nitrogen;438
1.12.1.1.2.7.1;40.1.1.5.6.2.7.1 Variation 1: Iron-Catalyzed Oxidative Coupling of Hetarenes and Tertiary N-Methylamines;439
1.12.1.1.2.7.2;40.1.1.5.6.2.7.2 Variation 2: Copper-Catalyzed Cross-Dehydrogenative Coupling Reaction of Tertiary Amines and Indoles Using tert-Butyl Hydroperoxide as Oxidant;441
1.12.1.1.2.7.3;40.1.1.5.6.2.7.3 Variation 3: Ruthenium-Catalyzed Cross-Dehydrogenative Coupling Reactions of Tertiary Amines and Indoles;443
1.12.1.1.2.7.4;40.1.1.5.6.2.7.4 Variation 4: Iron-Catalyzed Cross-Dehydrogenative Coupling Reactions of tert-Butoxycarbonyl-Protected 1,2,3,4-Tetrahydroisoquinoline and Indoles;446
1.12.1.1.2.7.5;40.1.1.5.6.2.7.5 Variation 5: Copper-Catalyzed Cross-Dehydrogenative Coupling Reaction of Hetarenes Using Air/Oxygen as Oxidant;447
1.12.1.1.2.7.6;40.1.1.5.6.2.7.6 Variation 6: Transition-Metal-Catalyzed Oxidative Coupling of Alkylamides with Electron-Rich (Het)Arenes;450
1.12.1.1.2.7.7;40.1.1.5.6.2.7.7 Variation 7: Copper-Catalyzed Oxidative Coupling of Tertiary Amines and Siloxyfurans;454
1.12.1.1.2.7.8;40.1.1.5.6.2.7.8 Variation 8: Dirhodium(II) Caprolactamate Catalyzed Oxidative Coupling of Tertiary Amines and Siloxyfurans;456
1.12.1.1.2.8;40.1.1.5.6.2.8 Method 8: Copper-Catalyzed Oxidative C(sp³)--H Bond Arylation with Arylboronic Acids (Petasis–Mannich Reaction);458
1.12.1.1.2.9;40.1.1.5.6.2.9 Method 9: Synthesis of Nonnatural Amino Acids via Functionalization of a-C(sp3)--H Bonds of Tertiary Amines;460
1.12.1.1.2.9.1;40.1.1.5.6.2.9.1 Variation 1: Functionalization of Glycine Derivatives by Direct C--C Bond Formation;460
1.12.1.1.2.9.2;40.1.1.5.6.2.9.2 Variation 2: Cross-Dehydrogenative Coupling Reactions of Amino Acids and Ketones by Cooperative Transition-Metal and Amino Catalysis;465
1.12.1.1.2.10;40.1.1.5.6.2.10 Method 10: a-Functionalization of Nonactivated Aliphatic Amines in the Absence of Oxidant: Ruthenium-Catalyzed Alkynylations;467
1.12.1.1.3;40.1.1.5.6.3 Transition-Metal-Catalyzed Nonoxidative Functionalization of a-C(sp3)--H Bonds of Amines;469
1.12.1.1.3.1;40.1.1.5.6.3.1 Transition-Metal-Catalyzed Hydroaminoalkylation;470
1.12.1.1.3.1.1;40.1.1.5.6.3.1.1 Method 1: Transition-Metal-Catalyzed Intermolecular Hydroaminoalkylation of Unactivated Alkenes;470
1.12.1.1.3.1.1.1;40.1.1.5.6.3.1.1.1 Variation 1: Hydroaminoalkylation of Unactivated Alkenes with N-Alkylarylamines;470
1.12.1.1.3.1.1.2;40.1.1.5.6.3.1.1.2 Variation 2: Hydroaminoalkylation of Unactivated Alkenes with Dialkylamines;475
1.12.1.1.3.1.1.3;40.1.1.5.6.3.1.1.3 Variation 3: Hydroaminoalkylation with Secondary Amines: Enantioselective Synthesis of Chiral Amines;477
1.12.1.1.3.1.2;40.1.1.5.6.3.1.2 Method 2: Transition-Metal-Catalyzed Intramolecular C--H Activation of Primary and Secondary Amines;488
1.12.1.1.4;40.1.1.5.6.4 a-C(sp3)--H Bond Functionalization of Amines via Transition-Metal-Catalyzed Hydride Transfer Cyclization;493
1.12.1.1.4.1;40.1.1.5.6.4.1 Method 1: Coupling of Unactivated Alkynes and C(sp3)--H Bonds;493
1.12.1.1.4.1.1;40.1.1.5.6.4.1.1 Variation 1: Direct Coupling of Unactivated Alkynes and C(sp3)--H Bonds Catalyzed by Platinum(IV) Iodide;493
1.12.1.1.4.1.2;40.1.1.5.6.4.1.2 Variation 2: A Two-Step, One-Pot Gold-Catalyzed Cyclization of 1-(But-3-ynyl)piperidine Derivatives;495
1.12.1.1.4.2;40.1.1.5.6.4.2 Method 2: Coupling of Electron-Deficient Alkenes and a-C(sp3)--H Bonds of Amines;496
1.12.1.1.4.2.1;40.1.1.5.6.4.2.1 Variation 1: Enantioselective Synthesis of 1,2,3,4-Tetrahydroquinolines via Cobalt(II)-Catalyzed Tandem 1,5-Hydride Transfer/Cyclization;496
1.12.1.1.4.2.2;40.1.1.5.6.4.2.2 Variation 2: Gold-Catalyzed Enantioselective Functionalization of C(sp3)--H Bonds by Redox-Neutral Domino Reactions;500
1.12.1.1.5;40.1.1.5.6.5 Transition-Metal-Catalyzed a-Arylation of Saturated Amines;503
1.12.1.1.5.1;40.1.1.5.6.5.1 Method 1: C(sp3)--H Bond Arylation Directed by an Amidine Protecting Group: a-Arylation of Pyrrolidines and Piperidines;503
1.12.1.1.5.2;40.1.1.5.6.5.2 Method 2: Iron-Catalyzed Arylation at the a-Position of Aliphatic Amines;507
1.12.1.1.6;40.1.1.5.6.6 Remote Functionalization of Unactivated C(sp3)--H Bonds of Amines and Amides;509
1.12.1.1.6.1;40.1.1.5.6.6.1 Method 1: Palladium-Catalyzed Picolinamide-Directed Remote Arylation of Unactivated C(sp3)--H Bonds;509
1.12.1.1.6.2;40.1.1.5.6.6.2 Method 2: Synthesis of Fused Indolines by Palladium-Catalyzed Asymmetric C--C Coupling Involving an Unactivated Methylene Group at the Position ß to Nitrogen;513
1.12.1.1.6.3;40.1.1.5.6.6.3 Method 3: C(sp3)--H Bond Activation with Ruthenium(II) Catalysts and C3-Alkylation of Cyclic Amines;515
1.13;Author Index;524
1.14;Abbreviations;546
1.15;List of All Volumes;552


1.2.5 Product Subclass 5: Palladium(III)-Containing Complexes
D. C. Powers and T. Ritter General Introduction
Compared with the chemistry of palladium in the 0, I, II, and IV oxidation states, organopalladium(III) chemistry is in its infancy, and complexes containing palladium in the III oxidation state are rare.[1–4] Recent studies have expanded the family of characterized palladium(III) complexes and have also begun to elucidate the potential roles of palladium(III) intermediates in catalysis. This section will review preparative methods for the synthesis of palladium(III) complexes and discuss reactions in which palladium(III) intermediates are proposed. SAFETY: The palladium complexes reported herein can be prepared using the standard precautions generally taken with other potentially hazardous substances found in a chemistry laboratory. Many of the reagents used to prepare palladium(III) complexes are strong oxidants, which can be particularly hazardous. 1.2.5.1 Synthesis of Palladium(III)-Containing Complexes
1.2.5.1.1 Mononuclear Palladium(III) Complexes Mononuclear palladium(II) complexes are typically square planar whereas mononuclear palladium(IV) complexes are typically octahedral.[5] Based on the molecular orbital diagram in ? Figure 1, mononuclear palladium(III) complexes are anticipated to be paramagnetic, low-spin d7, tetragonally distorted octahedral complexes, in which the unpaired electron resides predominantly in the orbital.[6] ? Figure 1 Molecular Orbital Diagram for Mononuclear Palladium(II), Palladium(III), and Palladium(IV) Complexes[5,6] Unlike complexes based on platinum(III),[7–15] compounds containing palladium(III) are rare. Several mononuclear coordination complexes, proposed to contain palladium(III), have been observed by electrochemical measurements as well as EPR spectroscopy.[16–25] The spin density in these complexes, either metal- or ligand-centered, is the source of continuing discussion.[26–29] The various methods that have been developed for the preparation of mononuclear palladium(III) complexes are presented in the following sections. 1.2.5.1.1.1 Method 1: Disproportionation of Palladium(II) Complexes Facially coordinating 1,4,7-triazacyclononane and 1,4,7-trithiacyclononane ligands have been used to stabilize mononuclear palladium(III) complexes.[30–33] Complex 2, in which two facially coordinating tridentate ligands compose the octahedral coordination environment of the palladium(III) center, has been prepared by disproportionation of palladium(II) (? Scheme 1). X-ray crystallographic characterization has established the distorted octahedral geometry of the palladium centers, as expected for low-spin, d7 palladium(III). Electrochemical and spectroscopic investigations have indicated that the unpaired electron in complex 2 resides predominantly in the orbital, consistent with the molecular orbital diagram in ? Figure 1.[34–39] ? Scheme 1 Synthesis of Mononuclear Palladium(III) Werner Complexes by Disproportionation of Palladium(II)[34] Bis(1,4,7-triazacyclononane-?3N)palladium(III) Hexafluorophosphate (2):[34] PdCl2 (0.50 g, 2.8 mmol, 1.0 equiv) was dissolved in deionized H2O (20 mL) and the soln was adjusted to pH 9 with NaOH. The soln was warmed to 50 °C. 1,4,7-Triazacyclononane (0.90 g, 7.0 mmol, 2.5 equiv) was added directly to the PdCl2 soln, in which it dissolved rapidly. Heating was continued for 1 h at this temperature, during which time the remaining solid PdCl2 dissolved, yielding a lemon-yellow soln with deposited Pd metal (0.13 g; 45% of total Pd); the metallic solid was removed by filtration. The yellow filtrate contained two species; the major constituent was the cation of complex 2 with a minor amount of the cation of complex 1. Addition of sat. NH4PF6 soln caused precipitation of 2 as a yellow powder. 1.2.5.1.1.2 Method 2: Oxidation of Palladium(II) Complexes with Perchloric Acid Mononuclear palladium(III) complex 4 has been prepared by chemical oxidation of mononuclear palladium(II) complex 3 with perchloric acid (? Scheme 2).[30] Experimental details of the oxidation of 3 with perchloric acid are unavailable. ? Scheme 2 Preparation of a Mononuclear Palladium(III) Complex by Oxidation of a Mononuclear Palladium(II) Complex with Perchloric Acid[30] 1.2.5.1.1.3 Method 3: Electrochemical Oxidation of Palladium(II) Complexes In 2010, controlled potential electrolysis (CPE) was used to prepare the first mononuclear organometallic complexes of palladium(III) (complexes 6, ? Scheme 3).[40] One-electron oxidation of complexes 5 results in the formation of mononuclear palladium(III) complexes 6, in which the palladium(III) centers are stabilized by chelating tetradentate ligands. ? Scheme 3 Preparation of Mononuclear Palladium(III) Complexes by Controlled Potential Electrolysis of Mononuclear Palladium(II) Complexes[40] R1 X- Conditions Yield (%) Ref Me BF4- Bu4NBF4, CH2Cl2 78 [40] Me PF6- Bu4NPF6, THF 63 [40] Me ClO4- Bu4NClO4, THF 86 [40] Ph ClO4- Bu4NClO4, THF 52 [40] Chloro[3,7-di-tert-butyl-3,7-diaza-1,5(2,6)-dipyridinacyclooctaphane-?4N]methylpalladium(III) Tetrafluoroborate (6, R1 = Me; X = BF4); Typical Procedure:[40] CPE of 5 (R1 = Me) was performed in a two-compartment bulk electrolysis cell in which the auxiliary electrode was separated from the working compartment by a medium-frit glass junction. The electrolysis was carried out in a 100-mL electrolysis cell using a reticulated vitreous carbon working electrode. A stirred soln of mononuclear Pd(II) complex 5 (R1 = Me; 90.0 mg, 177 µmol, 1.00 equiv) in deaerated 0.1 M Bu4NBF4 in CH2Cl2 (70 mL) was electrolyzed at a potential of 0.600 V at 20 °C. The electrolysis was stopped after the charge corresponding to one-electron oxidation had been transferred. The dark green soln resulting from electrolysis was stored at -20 °C overnight. The resulting green fine-crystalline precipitate of mononuclear Pd(III) complex 6 (R1 = Me; X = BF4) was collected by filtration from the cold soln and washed with both Et2O and pentane; yield: 78%. The product was recrystallized (layering a MeCN soln of the product with Et2O at -20 °C) to give 6 (R1 = Me; X = BF4)•MeCN as a dark blue-green solid; yield: 78.9 mg (70%); 1H NMR (CD3CN, d): 12.3 (br s), 10.0, 8.6, -3.2; µeff = 1.80 µB (Evans method, CD3CN soln); UV-vis (MeCN) ? (?): 723(1.1 × 103), 545 (sh, 4.9 × 102), 368 (3.3 × 103), 263 nm (1.2 × 104). 1.2.5.1.1.4 Method 4: Oxidation of Palladium(II) with Single-Electron Oxidants One-electron oxidation of mononuclear palladium(II) complex 7 with either ferrocenium hexafluorophosphate or thianthrenyl hexafluoroantimonate affords mononuclear palladium(III) complex 8 (? Scheme 4).[40] Electrochemical and chemical oxidations (? Sections 1.2.5.1.1.3 and 1.2.5.1.1.4, respectively) allow access to complementary substrate classes; electrochemical oxidation of 7 failed to provide access to mononuclear palladium(III) complex 8. ? Scheme 4 Preparation of a Mononuclear Palladium(III) Complex from a Mononuclear Palladium(II) Complex Using a One-Electron Oxidant[40] [3,7-Di-tert-butyl-3,7-diaza-1,5(2,6)-dipyridinacyclooctaphane-?N4]dimethylpalladium(III) Perchlorate (8):[40] A soln of ferrocenium hexafluorophosphate (58.7 mg, 177 µmol, 1.00 equiv) in MeCN (3 mL) was added dropwise to a stirred suspension of 7 (86.8 mg, 177 µmol, 1.00 equiv) in MeCN (7 mL) at rt in a N2-filled drybox. The mixture was stirred for 20 min, and then the solvent was removed under reduced pressure. The solid residue was redissolved in MeCN (2 mL) and the soln was filtered through a cotton plug. A solid sample of LiClO4 (56.7 mg, 533 µmol, 3.01 equiv) was added to the filtrate causing precipitation of a dark green crystalline solid. The suspension was stored at -30 °C for 30 min. The resulting dark green...


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.