E-Book, Englisch, 542 Seiten, PDF, Format (B × H): 170 mm x 240 mm
Reihe: Science of Synthesis
E-Book, Englisch, 542 Seiten, PDF, Format (B × H): 170 mm x 240 mm
Reihe: Science of Synthesis
ISBN: 978-3-13-178881-8
Verlag: Thieme
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
methods in synthetic chemistry. Its product-based classification system enables
chemists to easily find solutions to their synthetic problems.
Key Features:
- Critical selection of reliable synthetic methods,
saving the researcher the time required to find procedures in the primary
literature. - Expertise provided by leading chemists. - Detailed experimental procedures. - The information is highly organized in a
logical format to allow easy access to the relevant
information.
The Science of Synthesis Editorial Board, together with the volume editors and authors, is constantly reviewing the whole field of synthetic organic chemistry as presented in Science of Synthesis and evaluating significant developments in synthetic methodology. Four annual volumes updating content across all categories ensure that you always have access to state-of-the-art synthetic methodology.
Zielgruppe
Wissenschaftler
Autoren/Hrsg.
Weitere Infos & Material
1;Science of Synthesis: Knowledge Updates 2013/1;1
1.1;Title page;5
1.2;Imprint;7
1.3;Preface;8
1.4;Abstracts;10
1.5;Overview;14
1.6;Table of Contents;16
1.7;Volume 5: Compounds of Group 14 (Ge, Sn, Pb);30
1.7.1;5.2 Product Class 2: Tin Compounds;30
1.7.1.1;5.2.1 Product Subclass 1: Tin Hydrides;30
1.7.1.1.1;Synthesis of Product Subclass 1;32
1.7.1.1.1.1;5.2.1.1 Method 1: Reduction of Tin Halides;32
1.7.1.1.1.1.1;5.2.1.1.1 Variation 1: Reduction of Tin Halides with Lithium Aluminum Hydride;32
1.7.1.1.1.1.2;5.2.1.1.2 Variation 2: Reduction of Tin Halides with Sodium Borohydride;34
1.7.1.1.1.2;5.2.1.2 Method 2: Synthesis from Organotin Oxides, Alkoxides, or Amides by Reduction;35
1.7.1.1.1.3;5.2.1.3 Method 3: Synthesis from Organotin Lithium, Sodium, Potassium, or Magnesium Compounds by Reactions with Electrophiles;36
1.7.1.1.2;Applications of Product Subclass 1 in Organic Synthesis;37
1.7.1.1.2.1;5.2.1.4 Tin-Mediated Radical Chain Reactions Not Involving Rearrangement of Intermediate Radicals;37
1.7.1.1.2.1.1;5.2.1.4.1 Method 1: Reduction of Carbon--Heteroatom Bonds;41
1.7.1.1.2.1.1.1;5.2.1.4.1.1 Variation 1: Reduction of Carbon--Halogen Bonds;41
1.7.1.1.2.1.1.2;5.2.1.4.1.2 Variation 2: Reduction of C--O Bonds;45
1.7.1.1.2.1.1.3;5.2.1.4.1.3 Variation 3: Reduction of C--N Bonds;48
1.7.1.1.2.1.2;5.2.1.4.2 Method 2: Formation of C--C Bonds by Radical Additions to Alkenes;50
1.7.1.1.2.1.2.1;5.2.1.4.2.1 Variation 1: Formation of C--C Bonds by Intermolecular Reactions with Alkenes;51
1.7.1.1.2.1.2.2;5.2.1.4.2.2 Variation 2: Formation of C--C Bonds by Intramolecular Addition of Carbon Radicals to Double Bonds;55
1.7.1.1.2.1.3;5.2.1.4.3 Method 3: Formation of C--N Bonds by Reactions of Nitrogen-Centered Radicals;68
1.7.1.1.2.2;5.2.1.5 Tin-Mediated Radical Reactions That Proceed with Rearrangement of Intermediate Radicals;72
1.7.1.1.2.2.1;5.2.1.5.1 Method 1: Radical Reactions That Proceed with Opening of Small Rings;72
1.7.1.1.2.2.2;5.2.1.5.2 Method 2: Radical Reactions That Proceed with 1,2- and 1,4-Group Transfer;75
1.7.1.1.2.2.3;5.2.1.5.3 Method 3: Radical Translocation through Intramolecular Hydrogen Abstraction;80
1.7.1.1.2.3;5.2.1.6 Hydrostannylation;84
1.7.1.1.2.3.1;5.2.1.6.1 Method 1: Hydrostannylation of Alkynes;84
1.7.1.1.2.3.1.1;5.2.1.6.1.1 Variation 1: Radical Hydrostannylation of Terminal Alkynes;84
1.7.1.1.2.3.1.2;5.2.1.6.1.2 Variation 2: Transition-Metal-Catalyzed Hydrostannylation of Terminal Alkynes;86
1.7.1.1.2.3.1.3;5.2.1.6.1.3 Variation 3: Palladium-Catalyzed Sequential Hydrostannylation and Stille Cross Coupling of Terminal Alkynes;89
1.7.1.1.2.3.1.4;5.2.1.6.1.4 Variation 4: Radical Hydrostannylation of Internal Alkynes;90
1.7.1.1.2.3.1.5;5.2.1.6.1.5 Variation 5: Transition-Metal-Catalyzed Hydrostannylation of Internal Alkynes;92
1.7.1.1.2.3.2;5.2.1.6.2 Method 2: Hydrostannylation of C==C, C==O, and C==N Bonds;96
1.7.1.1.2.3.2.1;5.2.1.6.2.1 Variation 1: Hydrostannylation of Alkenes;96
1.7.1.1.2.3.2.2;5.2.1.6.2.2 Variation 2: Addition Reactions of Tin Hydrides to C==O Bonds;99
1.7.1.1.2.3.2.3;5.2.1.6.2.3 Variation 3: Additions of Tin Hydrides to C==N Bonds;101
1.8;Volume 7: Compounds of Groups 13 and 2 (Al, Ga, In, Tl, Be···Ba);108
1.8.1;7.6 Product Class 6: Magnesium Compounds;108
1.8.1.1;7.6.11.21 Grignard Reagents with Transition Metals;108
1.8.1.1.1;7.6.11.21.1 Method 1: Mercury-Catalyzed Addition of Grignard Reagents to Aldehydes;109
1.8.1.1.2;7.6.11.21.2 Method 2: Nickel-Catalyzed Cross Coupling of Grignard Reagents;110
1.8.1.1.2.1;7.6.11.21.2.1 Variation 1: Reaction with Alkyl Halides;110
1.8.1.1.2.2;7.6.11.21.2.2 Variation 2: Reaction with Organosulfur Compounds;111
1.8.1.1.2.3;7.6.11.21.2.3 Variation 3: Reaction with Aryl Fluorides under Microwave Irradiation;113
1.8.1.1.3;7.6.11.21.3 Method 3: Palladium-Catalyzed Cross Coupling of Grignard Reagents;114
1.8.1.1.3.1;7.6.11.21.3.1 Variation 1: Reaction with Aryl Halides;114
1.8.1.1.3.2;7.6.11.21.3.2 Variation 2: Reaction with Aryl Fluorides under Microwave Irradiation;115
1.8.1.1.3.3;7.6.11.21.3.3 Variation 3: Reaction with Aryl Halides Promoted by Zinc(II) Bromide;116
1.8.1.1.3.4;7.6.11.21.3.4 Variation 4: Reaction with Hetaryl Sulfonates;118
1.8.1.1.4;7.6.11.21.4 Method 4: Copper-Catalyzed Reactions of Grignard Reagents;119
1.8.1.1.4.1;7.6.11.21.4.1 Variation 1: Cross Coupling with Hetaryl Halides;119
1.8.1.1.4.2;7.6.11.21.4.2 Variation 2: Carbometalation of Propargylic Alcohols;120
1.8.1.1.4.3;7.6.11.21.4.3 Variation 3: Reaction with a,ß-Unsaturated Carbonyl Compounds;122
1.8.1.1.4.4;7.6.11.21.4.4 Variation 4: Allylic Substitution Reactions;123
1.8.1.1.4.5;7.6.11.21.4.5 Variation 5: Ring Opening of Chiral Epoxides;125
1.8.1.1.4.6;7.6.11.21.4.6 Variation 6: Cross Coupling with Allylic Chlorides;127
1.8.1.1.5;7.6.11.21.5 Method 5: Iron-Catalyzed Cross Coupling of Grignard Reagents;128
1.8.1.1.5.1;7.6.11.21.5.1 Variation 1: Reaction with Aryl Halides;128
1.8.1.1.5.2;7.6.11.21.5.2 Variation 2: Reaction with Alkynyloxiranes;130
1.8.1.1.5.3;7.6.11.21.5.3 Variation 3: Reaction with Primary and Secondary Alkyl Halides;131
1.8.1.1.6;7.6.11.21.6 Method 6: Iron-Catalyzed Reduction of Organic Halides;134
1.8.1.1.7;7.6.11.21.7 Method 7: Iridium-Catalyzed Allylic Substitution Reactions;135
1.8.1.1.8;7.6.11.21.8 Method 8: Titanium-Catalyzed Cross Coupling of Grignard Reagents;136
1.8.1.1.8.1;7.6.11.21.8.1 Variation 1: Reaction with Aryl Fluorides;136
1.8.1.1.8.2;7.6.11.21.8.2 Variation 2: Reaction with O,N-Acetals;137
1.8.1.1.9;7.6.11.21.9 Method 9: Zirconium-Catalyzed Reaction with Alkynes;138
1.8.2;7.7 Product Class 7: Calcium Compounds;142
1.8.2.1;7.7.1 Product Subclass 1: Organocalcium Hydrides;142
1.8.2.1.1;Synthesis of Product Subclass 1;142
1.8.2.1.1.1;7.7.1.1 Method 1: Synthesis of Phenylcalcium Hydride from Calcium Metal;142
1.8.2.1.2;Applications of Product Subclass 1 in Organic Synthesis;143
1.8.2.1.2.1;7.7.1.2 Method 2: Reaction of Phenylcalcium Hydride with Electrophiles;143
1.8.2.2;7.7.2 Product Subclass 2: Heterobimetallic Calcium Compounds;144
1.8.2.2.1;Synthesis of Product Subclass 2;144
1.8.2.2.1.1;7.7.2.1 Method 1: Synthesis of Heterobimetallic Calcium Compounds with Alkaline Earth and Transition Metals;144
1.8.2.2.1.2;7.7.2.2 Method 2: Synthesis of Calcium Borates;145
1.8.2.2.2;Applications of Product Subclass 2 in Organic Synthesis;146
1.8.2.2.2.1;7.7.2.3 Method 3: Intramolecular Hydroamination of Amino-Substituted Alkenes;146
1.8.2.2.2.2;7.7.2.4 Method 4: Baeyer–Villiger Oxidation of Ketones;147
1.8.2.3;7.7.3 Product Subclass 3: Organocalcium Halides;150
1.8.2.3.1;Synthesis of Product Subclass 3;150
1.8.2.3.1.1;7.7.3.1 Method 1: Synthesis of Methylcalcium Iodide from Calcium Metal;150
1.8.2.3.2;Applications of Product Subclass 3 in Organic Synthesis;151
1.8.2.3.2.1;7.7.3.2 Method 2: Reaction of Organocalcium Halides with Electrophiles;151
1.8.2.4;7.7.4 Product Subclass 4: Calcium Alkoxides;152
1.8.2.4.1;Synthesis of Product Subclass 4;152
1.8.2.4.1.1;7.7.4.1 Method 1: Synthesis of Calcium Alkoxides from Calcium Metal;152
1.8.2.4.1.2;7.7.4.2 Method 2: Synthesis of Calcium Alkoxides from Calcium(II) Compounds;153
1.8.2.4.2;Applications of Product Subclass 4 in Organic Synthesis;154
1.8.2.4.2.1;7.7.4.3 Method 3: Asymmetric Baylis–Hillman Reactions;154
1.8.2.4.2.2;7.7.4.4 Method 4: Asymmetric Aldol Reactions;154
1.8.2.4.2.3;7.7.4.5 Method 5: Asymmetric 1,4-Addition Reactions;155
1.8.2.4.2.4;7.7.4.6 Method 6: Asymmetric Epoxidation Reactions;156
1.8.2.5;7.7.5 Product Subclass 5: Calcium Phosphates;157
1.8.2.5.1;Synthesis of Product Subclass 5;157
1.8.2.5.1.1;7.7.5.1 Method 1: Synthesis of Chiral Calcium Phosphates from Calcium(II) Compounds;157
1.8.2.5.2;Applications of Product Subclass 5 in Organic Synthesis;159
1.8.2.5.2.1;7.7.5.2 Method 2: Asymmetric Mannich Reactions of Aldimines;159
1.8.2.5.2.1.1;7.7.5.2.1 Variation 1: Reaction with Acyclic Nucleophiles;159
1.8.2.5.2.1.2;7.7.5.2.2 Variation 2: Reaction with Cyclic Nucleophiles;161
1.8.2.5.2.2;7.7.5.3 Method 3: Asymmetric Reactions of Indolin-2-ones;162
1.8.2.5.2.2.1;7.7.5.3.1 Variation 1: Oxidation of 3-Arylindolin-2-ones;162
1.8.2.5.2.2.2;7.7.5.3.2 Variation 2: Chlorination of 3-Arylindolin-2-ones;163
1.8.2.5.2.3;7.7.5.4 Method 4: Asymmetric Amination of Enamines;164
1.8.2.5.2.4;7.7.5.5 Method 5: Asymmetric Carbonyl-Ene Reactions;167
1.8.2.5.2.5;7.7.5.6 Method 6: Asymmetric Friedel–Crafts Alkylation;168
1.8.2.6;7.7.6 Product Subclass 6: Calcium Amides;169
1.8.2.6.1;Synthesis of Product Subclass 6;169
1.8.2.6.1.1;7.7.6.1 Method 1: Synthesis of Calcium–Bis(4,5-dihydrooxazole) Complexes from Calcium(II) Compounds;169
1.8.2.6.2;Applications of Product Subclass 6 in Organic Synthesis;170
1.8.2.6.2.1;7.7.6.2 Method 2: Asymmetric 1,4-Addition Reactions with a,ß-Unsaturated Carbonyl Derivatives;170
1.8.2.6.2.2;7.7.6.3 Method 3: Asymmetric [3 + 2]-Cycloaddition Reactions;172
1.8.2.6.2.3;7.7.6.4 Method 4: Asymmetric 1,4-Addition/Protonation Reactions;173
1.8.2.6.2.4;7.7.6.5 Method 5: Asymmetric 1,4-Addition Reactions of Oxazolones;175
1.8.2.6.2.5;7.7.6.6 Method 6: Asymmetric 1,4-Addition Reactions to Nitroalkenes;175
1.8.2.6.2.6;7.7.6.7 Method 7: Asymmetric Hydroamination Reactions;177
1.8.2.6.2.7;7.7.6.8 Method 8: Friedel–Crafts Addition to Arenes;178
1.8.2.7;7.7.7 Product Subclass 7: Diorganocalcium Compounds;179
1.8.2.7.1;Synthesis of Product Subclass 7;179
1.8.2.7.1.1;7.7.7.1 Method 1: Synthesis of Bis(phenylethynyl)calcium from Calcium Metal;179
1.8.2.7.1.2;7.7.7.2 Method 2: Synthesis of Diallylcalcium from Calcium Iodide;180
1.8.2.7.1.3;7.7.7.3 Method 3: Synthesis of Calcium Metallocenes;181
1.8.2.7.1.4;7.7.7.4 Method 4: Synthesis of Dibenzylcalcium Complexes;181
1.8.2.7.2;Applications of Product Subclass 7 in Organic Synthesis;182
1.8.2.7.2.1;7.7.7.5 Method 5: Hydrogenation of Alkenes;182
1.8.2.7.2.2;7.7.7.6 Method 6: Hydrosilylation of Ketones;183
1.9;Volume 9: Fully Unsaturated Small Ring Heterocycles and Monocyclic Five-Membered Hetarenes with One Heteroatom;186
1.9.1;9.13 Product Class 13: 1H-Pyrroles;186
1.9.1.1;9.13.5 1H-Pyrroles;186
1.9.1.1.1;9.13.5.1 Synthesis by Ring-Closure Reactions;187
1.9.1.1.1.1;9.13.5.1.1 By Formation of Two N--C and Two C--C Bonds;187
1.9.1.1.1.1.1;9.13.5.1.1.1 Fragments N, C--C, and Two C Fragments;187
1.9.1.1.1.1.1.1;9.13.5.1.1.1.1 Method 1: Reaction of Nitroalkanes, Aldehydes, 1,3-Dicarbonyl Compounds, and Amines;187
1.9.1.1.1.1.1.2;9.13.5.1.1.1.2 Method 2: Solid-Phase Synthesis of Pyrrole-3-carboxamides from Enaminones and Nitroalkenes;188
1.9.1.1.1.1.1.3;9.13.5.1.1.1.3 Method 3: Combination of an Alkyl Propynoate, Aldehyde, and an Amine;189
1.9.1.1.1.1.1.4;9.13.5.1.1.1.4 Method 4: Samarium-Catalyzed Three-Component Coupling Reaction;190
1.9.1.1.1.1.1.5;9.13.5.1.1.1.5 Method 5: Titanium-Catalyzed Three-Component Coupling Reaction;191
1.9.1.1.1.2;9.13.5.1.2 By Formation of Two N--C Bonds and One C--C Bond;191
1.9.1.1.1.2.1;9.13.5.1.2.1 Fragment N and Two C--C Fragments;191
1.9.1.1.1.2.1.1;9.13.5.1.2.1.1 Method 1: Reaction of Amines and Two Carbonyl Compounds;191
1.9.1.1.1.2.1.2;9.13.5.1.2.1.2 Method 2: Reaction of Amines, 1,3-Dicarbonyl Compounds, and Alkenes or Alkynes;195
1.9.1.1.1.2.1.3;9.13.5.1.2.1.3 Method 3: Reaction of Amines, Carbonyl Compounds, and Alkenes or Alkynes;197
1.9.1.1.1.2.1.4;9.13.5.1.2.1.4 Method 4: Reaction of Amines and Combinations of Alkanes, Alkenes, and Alkynes;199
1.9.1.1.1.2.2;9.13.5.1.2.2 Fragments N, C--C--C, and C;202
1.9.1.1.1.2.2.1;9.13.5.1.2.2.1 Method 1: Reaction of Amines, a,ß-Unsaturated Carbonyl Compounds, and Carbon Nucleophiles;202
1.9.1.1.1.2.2.1.1;9.13.5.1.2.2.1.1 Variation 1: Reactions with Aldehydes and Acylsilanes as Umpolung Nucleophiles under Stetter Conditions;202
1.9.1.1.1.2.2.1.2;9.13.5.1.2.2.1.2 Variation 2: Reactions with Nitroalkanes as Nucleophiles for Conjugate Addition;204
1.9.1.1.1.2.2.2;9.13.5.1.2.2.2 Method 2: Reaction of Amines, 1,3-Diketones, and Aldehydes;205
1.9.1.1.1.3;9.13.5.1.3 By Formation of One N--C Bond and Two C--C Bonds;206
1.9.1.1.1.3.1;9.13.5.1.3.1 Fragments N--C, C--C, and C;206
1.9.1.1.1.3.1.1;9.13.5.1.3.1.1 Method 1: Reaction of Imines, Acid Chlorides, and Alkynes;206
1.9.1.1.1.3.1.2;9.13.5.1.3.1.2 Method 2: Synthesis of Pyrrole-3,4-dicarboxylates by Multicomponent Reactions Involving Dimethyl Acetylenedicarboxylate;210
1.9.1.1.1.3.1.2.1;9.13.5.1.3.1.2.1 Variation 1: Reaction of Dimethyl Acetylenedicarboxylate with Amino Acids and Acid Chlorides;211
1.9.1.1.1.3.1.2.2;9.13.5.1.3.1.2.2 Variation 2: Reaction of Dimethyl Acetylenedicarboxylate with Imines and Diazoacetonitrile or an Isocyanide;211
1.9.1.1.1.3.1.3;9.13.5.1.3.1.3 Method 3: Synthesis of N--C2 Benzo-Fused Pyrroles from Isoquinolines, Quinolines, or Pyridines;212
1.9.1.1.1.3.1.4;9.13.5.1.3.1.4 Method 4: Reactions of Aryl and Alkyl Acetylenes in Stoichiometric Metal-Mediated Pyrrole Syntheses;213
1.9.1.1.1.3.1.5;9.13.5.1.3.1.5 Method 5: Pyrrol-2-amine Synthesis from Nitriles, Aldehydes, and a-(Tosylamino)acetophenones;214
1.9.1.1.1.4;9.13.5.1.4 By Formation of Three C--C Bonds;215
1.9.1.1.1.4.1;9.13.5.1.4.1 Fragments C--N--C and Two C Fragments;215
1.9.1.1.1.4.1.1;9.13.5.1.4.1.1 Method 1: By Transformation of Benzylic Alcohols, Nitroalkanes, and tert-Butyl Isocyanoacetate Using Solid-Supported Reagents;215
1.9.1.1.1.4.1.2;9.13.5.1.4.1.2 Method 2: Reaction of Aldehydes, Ethyl (Diethoxyphosphoryl)acetate, and Tosylmethyl Isocyanide;216
1.9.1.1.1.5;9.13.5.1.5 By Formation of Two N--C Bonds;217
1.9.1.1.1.5.1;9.13.5.1.5.1 Fragments N and C--C--C--C;217
1.9.1.1.1.5.1.1;9.13.5.1.5.1.1 Method 1: Paal–Knorr Reaction;217
1.9.1.1.1.5.1.2;9.13.5.1.5.1.2 Method 2: Reaction of Amines with .-Modified Carbonyl Compounds as 1,4-Dicarbonyl Equivalents;225
1.9.1.1.1.5.1.3;9.13.5.1.5.1.3 Method 3: Reaction of Alka-2,3-dienyl Carbonyl Compounds and Cyclopropyl Ketones with Amines;228
1.9.1.1.1.5.1.4;9.13.5.1.5.1.4 Method 4: Reaction of Alk-3-ynyl Carbonyl Compounds with Amines;230
1.9.1.1.1.5.1.5;9.13.5.1.5.1.5 Method 5: Reaction of Buta-1,3-dienes and Related Compounds with Amines;232
1.9.1.1.1.5.1.6;9.13.5.1.5.1.6 Method 6: Reactions of 1,3-, 1,4-, and 1,5-Diynes with Amines;233
1.9.1.1.1.5.1.7;9.13.5.1.5.1.7 Method 7: Reaction of 1-En-3-yne Analogues and Amines;235
1.9.1.1.1.5.1.8;9.13.5.1.5.1.8 Method 8: Reaction of Enynol Analogues and Amine Derivatives;237
1.9.1.1.1.5.1.9;9.13.5.1.5.1.9 Method 9: Reaction of (Z)-1,4-Dichlorobut-2-ene with Amines;239
1.9.1.1.1.5.1.10;9.13.5.1.5.1.10 Method 10: Reaction of 2-Allylbuta-2,3-dienoates with Sodium Azide;240
1.9.1.1.1.5.1.11;9.13.5.1.5.1.11 Method 11: Reactions of 1,6-Dicarbonyl-2,4-diene Equivalents with Amines;241
1.9.1.1.1.6;9.13.5.1.6 By Formation of One N--C and One C--C Bond;242
1.9.1.1.1.6.1;9.13.5.1.6.1 Fragments N--C--C--C and C;242
1.9.1.1.1.6.1.1;9.13.5.1.6.1.1 Method 1: Phosphine-Mediated Reaction of a,ß-Unsaturated Imines with Acid Chlorides;242
1.9.1.1.1.6.1.2;9.13.5.1.6.1.2 Method 2: Rhodium(I)-Catalyzed [4 + 1]-Cycloaddition Reactions of a,ß-Unsaturated Imines with Terminal Alkynes;242
1.9.1.1.1.6.1.3;9.13.5.1.6.1.3 Method 3: Reaction of a,ß-Unsaturated Imines with Isocyanides or Carbenes;243
1.9.1.1.1.6.1.4;9.13.5.1.6.1.4 Method 4: Reaction of Acid Chlorides with Propargylamines and Sodium Iodide;244
1.9.1.1.1.6.2;9.13.5.1.6.2 Fragments N--C--C and C--C;245
1.9.1.1.1.6.2.1;9.13.5.1.6.2.1 Method 1: Reactions of 2H-Azirines and 1,3-Dicarbonyl Compounds;245
1.9.1.1.1.6.2.1.1;9.13.5.1.6.2.1.1 Variation 1: Reaction of Vinyl Azides with 1,3-Dicarbonyl Compounds;245
1.9.1.1.1.6.2.1.2;9.13.5.1.6.2.1.2 Variation 2: Reaction of Isolated 2H-Azirines with 1,3-Dicarbonyl Compounds;247
1.9.1.1.1.6.2.2;9.13.5.1.6.2.2 Method 2: Knorr-Type Reaction of Oximes and 1,3-Dicarbonyl Compounds;247
1.9.1.1.1.6.2.3;9.13.5.1.6.2.3 Method 3: Reaction of Enamines and Alkynes;248
1.9.1.1.1.6.2.4;9.13.5.1.6.2.4 Method 4: Reactions of 1,2-Diazabuta-1,3-dienes and Enol Derivatives;250
1.9.1.1.1.6.2.5;9.13.5.1.6.2.5 Method 5: Reactions of Imines and Alkenes;251
1.9.1.1.1.6.2.6;9.13.5.1.6.2.6 Method 6: Rearrangement Mechanisms;253
1.9.1.1.1.6.3;9.13.5.1.6.3 Fragments N--C and C--C--C;254
1.9.1.1.1.6.3.1;9.13.5.1.6.3.1 Method 1: Reaction of Amines with 1,3-Dicarbonyl Compounds and Equivalents;254
1.9.1.1.1.6.3.2;9.13.5.1.6.3.2 Method 2: Reactions of Imine Derivatives with a-Functionalized Alkenes and Alkynes;258
1.9.1.1.1.6.3.3;9.13.5.1.6.3.3 Method 3: Reactions of Substrates such as Cyclopropenes, Nitriles, Amino Chromium Carbenes, and a,ß-Unsaturated Carbonyl Compounds and Derivatives;261
1.9.1.1.1.7;9.13.5.1.7 By Formation of Two C--C Bonds;263
1.9.1.1.1.7.1;9.13.5.1.7.1 Fragments C--N--C--C and C;263
1.9.1.1.1.7.1.1;9.13.5.1.7.1.1 Method 1: Reaction of a-Amido Ketones with Ynolates;263
1.9.1.1.1.7.1.2;9.13.5.1.7.1.2 Method 2: Reaction of 4-(Trifluoroacetyl)munchnones with Wittig Reagents;263
1.9.1.1.1.7.2;9.13.5.1.7.2 Fragments C--N--C and C--C;264
1.9.1.1.1.7.2.1;9.13.5.1.7.2.1 Method 1: Reactions of a-Functionalized Isocyanides and Alkenes or Alkynes;265
1.9.1.1.1.7.2.1.1;9.13.5.1.7.2.1.1 Variation 1: Tosylmethyl Isocyanide and Alkenes;265
1.9.1.1.1.7.2.1.2;9.13.5.1.7.2.1.2 Variation 2: a-Substituted Tosylmethyl Isocyanides and Alkenes;265
1.9.1.1.1.7.2.1.3;9.13.5.1.7.2.1.3 Variation 3: Active Methylene Isocyanides and Alkynes;267
1.9.1.1.1.7.2.1.4;9.13.5.1.7.2.1.4 Variation 4: Active Methylene Isocyanides and Alkynes under Phosphine Catalysis with Reversal of Regioselectivity;268
1.9.1.1.1.7.2.1.5;9.13.5.1.7.2.1.5 Variation 5: Reactions with Alkenes Possessing Leaving Group Substituents;269
1.9.1.1.1.7.2.2;9.13.5.1.7.2.2 Method 2: Cycloaddition of Azomethine Ylides and Alkenes or Alkynes;271
1.9.1.1.1.7.2.2.1;9.13.5.1.7.2.2.1 Variation 1: N-a-Functionalized Amides (Thioamides), or N-a-Active Methylene Imines as Azomethine Ylide Precursors;271
1.9.1.1.1.7.2.2.2;9.13.5.1.7.2.2.2 Variation 2: N-Acylamino Acids as Azomethine Ylide Precursors in the Form of Munchnones;274
1.9.1.1.1.8;9.13.5.1.8 By Formation of One N--C Bond;278
1.9.1.1.1.8.1;9.13.5.1.8.1 Fragment N--C--C--C--C;278
1.9.1.1.1.8.1.1;9.13.5.1.8.1.1 Method 1: Paal–Knorr-Type Cyclizative Condensation;278
1.9.1.1.1.8.1.2;9.13.5.1.8.1.2 Method 2: 5-endo-Cyclization Reactions;283
1.9.1.1.1.8.1.2.1;9.13.5.1.8.1.2.1 Variation 1: Cyclization of Alk-3-ynylamines and Homopropargyl Azides;283
1.9.1.1.1.8.1.2.2;9.13.5.1.8.1.2.2 Variation 2: a-Alkynyl Imine Isomerization and Cyclization;286
1.9.1.1.1.8.1.2.3;9.13.5.1.8.1.2.3 Variation 3: Cyclization of Dienyl Azides and Dienyl Amines;286
1.9.1.1.1.8.1.3;9.13.5.1.8.1.3 Method 3: 5-exo-Cyclization Reactions;287
1.9.1.1.1.8.1.3.1;9.13.5.1.8.1.3.1 Variation 1: Cyclization of (Z)-(Alk-2-en-4-ynyl)amines and Analogues;287
1.9.1.1.1.8.1.3.2;9.13.5.1.8.1.3.2 Variation 2: Cyclization of (Z)-Alk-2-en-4-ynyl Imines;290
1.9.1.1.1.8.1.3.3;9.13.5.1.8.1.3.3 Variation 3: Cyclization of Alk-4-ynyl and Alk-4-enyl Imines;292
1.9.1.1.1.9;9.13.5.1.9 By Formation of One C--C Bond;295
1.9.1.1.1.9.1;9.13.5.1.9.1 Fragment C--N--C--C--C;295
1.9.1.1.1.9.1.1;9.13.5.1.9.1.1 Method 1: Reaction Involving Cyclization of Functionalized Ketene N,S-Acetals;295
1.9.1.1.1.9.1.2;9.13.5.1.9.1.2 Method 2: Metalation of Allyl Isothiocyanate;295
1.9.1.1.1.9.1.3;9.13.5.1.9.1.3 Method 3: Decarboxylative Cyclization of ß-Enaminones;295
1.9.1.1.1.9.1.4;9.13.5.1.9.1.4 Method 4: Enamine Cyclization;296
1.9.1.1.1.9.2;9.13.5.1.9.2 Fragment C--C--N--C--C;297
1.9.1.1.1.9.2.1;9.13.5.1.9.2.1 Method 1: Lewis Acid Catalyzed Ring Closure;297
1.9.1.1.1.9.2.2;9.13.5.1.9.2.2 Method 2: Palladium-Catalyzed Synthesis from Enamines;298
1.9.1.1.1.9.2.3;9.13.5.1.9.2.3 Method 3: Synthesis from N-Propargyl ß-Enaminones;298
1.9.1.1.1.9.2.4;9.13.5.1.9.2.4 Method 4: Synthesis Based on a Staudinger/Aza-Wittig Reaction;299
1.9.1.1.1.9.2.5;9.13.5.1.9.2.5 Method 5: Ring Closure To Give 3,4-Bis(lithiomethyl)dihydropyrroles and Subsequent Functionalization;299
1.9.1.1.1.9.2.6;9.13.5.1.9.2.6 Method 6: Metathesis-Based Approaches;300
1.9.1.1.2;9.13.5.2 Synthesis by Ring Transformation;301
1.9.1.1.2.1;9.13.5.2.1 By Ring Enlargement;301
1.9.1.1.2.1.1;9.13.5.2.1.1 Method 1: Aziridine Ring Expansion;301
1.9.1.1.2.1.2;9.13.5.2.1.2 Method 2: Azetidine, ß-Lactam, and Cyclopropane Ring Expansions;303
1.9.1.1.2.2;9.13.5.2.2 By Ring Contraction;305
1.9.1.1.2.2.1;9.13.5.2.2.1 Method 1: Nitrogen Extrusion from Pyridazines;305
1.9.1.1.2.2.2;9.13.5.2.2.2 Method 2: Sulfur Extrusion from N,S-Heterocycles;306
1.9.1.1.3;9.13.5.3 Synthesis by Aromatization;307
1.9.1.1.3.1;9.13.5.3.1 By Elimination;307
1.9.1.1.3.1.1;9.13.5.3.1.1 Method 1: Dihydropyrrolol Dehydration by Stoichiometric Copper(II);307
1.9.1.1.3.2;9.13.5.3.2 By Dehydrogenation;308
1.9.1.1.3.2.1;9.13.5.3.2.1 Method 1: Dihydropyrrole Oxidation Using 2,3-Dichloro-5,6-dicyano-benzo-1,4-quinone;308
1.9.1.1.3.2.2;9.13.5.3.2.2 Method 2: Photochemical Dihydropyrrole Dehydrogenation;308
1.9.1.1.3.3;9.13.5.3.3 By Combinations of Elimination, Dehydrogenation, Isomerization, Ring Substitution, and Substituent Modification Reactions;309
1.9.1.1.3.3.1;9.13.5.3.3.1 Method 1: Elimination in Conjunction with Dehydrogenation;309
1.9.1.1.3.3.2;9.13.5.3.3.2 Method 2: Elimination in Conjunction with Isomerization;309
1.9.1.1.3.3.3;9.13.5.3.3.3 Method 3: Dihydropyrrole Dehydrogenation in Conjunction with Cross Coupling;310
1.9.1.1.3.3.4;9.13.5.3.3.4 Method 4: Elimination from Pyrrolidin-4-ones in Conjunction with Isomerization and 4-Amination;310
1.9.1.1.3.3.5;9.13.5.3.3.5 Method 5: Decarboxylative Oxidation in Conjunction with Elimination/Isomerization and Ring Substitution;313
1.9.1.1.3.3.5.1;9.13.5.3.3.5.1 Variation 1: 5-Halogenated and 2,4-Diformylated Pyrroles from 5-Oxopyrrolidine-2-carboxylates;313
1.9.1.1.3.3.5.2;9.13.5.3.3.5.2 Variation 2: 1-(2-Oxo-1,3-dihydroindol-3-yl)pyrrole from 4-Hydroxypyrrolidine-2-carboxylate;313
1.9.1.1.4;9.13.5.4 Synthesis by Substituent Modification;314
1.9.1.1.4.1;9.13.5.4.1 Substitution of Existing Substituents;314
1.9.1.1.4.1.1;9.13.5.4.1.1 Substitution of C-Hydrogen, Halogens, and Other Heteroatoms;314
1.9.1.1.4.1.1.1;9.13.5.4.1.1.1 C-Acylation and C-Formylation;315
1.9.1.1.4.1.1.1.1;9.13.5.4.1.1.1.1 Method 1: Formylation under Vilsmeier Conditions;315
1.9.1.1.4.1.1.1.2;9.13.5.4.1.1.1.2 Method 2: Formylation via Metalated Pyrrole Intermediates;316
1.9.1.1.4.1.1.1.3;9.13.5.4.1.1.1.3 Method 3: Electrophilic Pyrrole Acylation;317
1.9.1.1.4.1.1.2;9.13.5.4.1.1.2 C-Alkylation;320
1.9.1.1.4.1.1.2.1;9.13.5.4.1.1.2.1 Method 1: Pyrrole Alkylation with Electrophilic Alkanes;320
1.9.1.1.4.1.1.2.2;9.13.5.4.1.1.2.2 Method 2: Pyrrole Alkylation with Alkenes;323
1.9.1.1.4.1.1.2.2.1;9.13.5.4.1.1.2.2.1 Variation 1: Intermolecular Alkylation with Electrophilic Alkenes;323
1.9.1.1.4.1.1.2.2.2;9.13.5.4.1.1.2.2.2 Variation 2: Intramolecular Alkylation with Nonactivated Alkenes;327
1.9.1.1.4.1.1.2.3;9.13.5.4.1.1.2.3 Method 3: Pyrrole Alkylation with Imines;328
1.9.1.1.4.1.1.2.4;9.13.5.4.1.1.2.4 Method 4: Pyrrole Alkylation with Aldehydes and Ketones;329
1.9.1.1.4.1.1.3;9.13.5.4.1.1.3 C-Alkenylation;330
1.9.1.1.4.1.1.3.1;9.13.5.4.1.1.3.1 Method 1: Reaction of Halopyrroles with Alkenes under Heck Conditions;330
1.9.1.1.4.1.1.3.2;9.13.5.4.1.1.3.2 Method 2: Reaction of Pyrroles with Alkenes under Oxidative Heck Conditions;330
1.9.1.1.4.1.1.3.3;9.13.5.4.1.1.3.3 Method 3: Reaction of Pyrroles with Alkynes and Equivalents;332
1.9.1.1.4.1.1.4;9.13.5.4.1.1.4 C-Alkynylation;334
1.9.1.1.4.1.1.4.1;9.13.5.4.1.1.4.1 Method 1: Sonogashira Reaction of Halopyrroles with Alkynes;334
1.9.1.1.4.1.1.4.2;9.13.5.4.1.1.4.2 Method 2: Reaction of 1-Halogenated Alkynes with Pyrroles;335
1.9.1.1.4.1.1.5;9.13.5.4.1.1.5 C-Arylation;335
1.9.1.1.4.1.1.5.1;9.13.5.4.1.1.5.1 Method 1: Cross Coupling of Aryl Halides with Pyrrolylboronates, or Arylboronic Acids with Halopyrroles;336
1.9.1.1.4.1.1.5.2;9.13.5.4.1.1.5.2 Method 2: Cross Coupling at Pyrrole CH with Aryl Halides and Arylboronic Acids;338
1.9.1.1.4.1.1.5.3;9.13.5.4.1.1.5.3 Method 3: Decarboxylative Arylation of Pyrrole C-Carboxylates;344
1.9.1.1.4.1.1.6;9.13.5.4.1.1.6 C-Cyanation;345
1.9.1.1.4.1.1.6.1;9.13.5.4.1.1.6.1 Method 1: Oxidative a-Cyanation with Hypervalent Iodine(III);345
1.9.1.1.4.1.1.6.2;9.13.5.4.1.1.6.2 Method 2: Oxidative Vilsmeier Cyanation;346
1.9.1.1.4.1.1.6.3;9.13.5.4.1.1.6.3 Method 3: Anodic Cyanation of 1-Aryl-1H-pyrroles;347
1.9.1.1.4.1.1.7;9.13.5.4.1.1.7 C-Trifluoromethylation;347
1.9.1.1.4.1.1.8;9.13.5.4.1.1.8 C-Halogenation;348
1.9.1.1.4.1.1.8.1;9.13.5.4.1.1.8.1 Method 1: Direct Substitution of Pyrrole CH by Halogen;348
1.9.1.1.4.1.1.8.1.1;9.13.5.4.1.1.8.1.1 Variation 1: Electrophilic Mono CH Substitution;348
1.9.1.1.4.1.1.8.1.2;9.13.5.4.1.1.8.1.2 Variation 2: Multiple Electrophilic CH Substitutions;353
1.9.1.1.4.1.1.8.2;9.13.5.4.1.1.8.2 Method 2: Halogenation via Metalated Pyrrole Intermediates;355
1.9.1.1.4.1.1.8.3;9.13.5.4.1.1.8.3 Method 3: Electrophilic Substitution of Pyrrole C-Carboxylate by Halogen;357
1.9.1.1.4.1.1.8.4;9.13.5.4.1.1.8.4 Method 4: Electrophilic Substitution of C-Trimethylsilyl Groups by Halogen;358
1.9.1.1.4.1.1.9;9.13.5.4.1.1.9 Functionalization with Nitrogen-Based Groups;359
1.9.1.1.4.1.1.9.1;9.13.5.4.1.1.9.1 Method 1: Electrophilic Nitration of Pyrroles;359
1.9.1.1.4.1.1.9.2;9.13.5.4.1.1.9.2 Method 2: Electrophilic Nitrosation of Pyrroles;361
1.9.1.1.4.1.1.9.3;9.13.5.4.1.1.9.3 Method 3: Reactions of Pyrroles with Arenediazonium Salts;362
1.9.1.1.4.1.1.9.4;9.13.5.4.1.1.9.4 Method 4: Azidation of Halo- and Aminopyrroles;363
1.9.1.1.4.1.1.9.5;9.13.5.4.1.1.9.5 Method 5: Amination and Amidation of Halopyrroles by Metal-Catalyzed Cross Coupling and Nucleophilic Aromatic Substitution;364
1.9.1.1.4.1.1.9.6;9.13.5.4.1.1.9.6 Method 6: Aryl- and Fluoroalkylsulfonamidation of Pyrroles;365
1.9.1.1.4.1.1.10;9.13.5.4.1.1.10 Functionalization with Silicon-Based Groups;366
1.9.1.1.4.1.1.10.1;9.13.5.4.1.1.10.1 Method 1: Pyrrole C-Silylation;366
1.9.1.1.4.1.1.11;9.13.5.4.1.1.11 Functionalization with Phosphorus-Based Groups;369
1.9.1.1.4.1.1.11.1;9.13.5.4.1.1.11.1 Method 1: Pyrrole Phosphorylation and Phosphinylation with Electrophilic Halophosphorus Reagents;369
1.9.1.1.4.1.1.11.2;9.13.5.4.1.1.11.2 Method 2: Pyrrole Phosphorylation and Phosphinylation via Lithiopyrrole Generation;371
1.9.1.1.4.1.1.12;9.13.5.4.1.1.12 Functionalization with Sulfur- and Selenium-Based Groups;372
1.9.1.1.4.1.1.12.1;9.13.5.4.1.1.12.1 Method 1: Electrophilic Pyrrolesulfonate Synthesis;372
1.9.1.1.4.1.1.12.2;9.13.5.4.1.1.12.2 Method 2: Chlorosulfonylation of Pyrroles with Chlorosulfonic Acid;373
1.9.1.1.4.1.1.12.3;9.13.5.4.1.1.12.3 Method 3: Pyrrolyl Sulfone Synthesis from Sulfonyl Chlorides;373
1.9.1.1.4.1.1.12.4;9.13.5.4.1.1.12.4 Method 4: Pyrrolyl Sulfoxide Synthesis;374
1.9.1.1.4.1.1.12.5;9.13.5.4.1.1.12.5 Method 5: Pyrrolylsulfonium Salt Synthesis;374
1.9.1.1.4.1.1.12.6;9.13.5.4.1.1.12.6 Method 6: Sulfanylpyrrole Synthesis;375
1.9.1.1.4.1.1.12.6.1;9.13.5.4.1.1.12.6.1 Variation 1: Synthesis of Sulfanylpyrroles Using Electrophilic Sulfenylation;375
1.9.1.1.4.1.1.12.6.2;9.13.5.4.1.1.12.6.2 Variation 2: Sulfanylpyrroles from Reactions of Metalated Pyrroles with Sulfur Sources;379
1.9.1.1.4.1.1.12.6.3;9.13.5.4.1.1.12.6.3 Variation 3: Sulfanylpyrroles from Nucleophilic Aromatic Substitution;380
1.9.1.1.4.1.1.12.6.4;9.13.5.4.1.1.12.6.4 Variation 4: Thiocyanation of Pyrroles;380
1.9.1.1.4.1.1.12.6.5;9.13.5.4.1.1.12.6.5 Variation 5: Dipyrrolyl Sulfide Synthesis;381
1.9.1.1.4.1.1.12.6.6;9.13.5.4.1.1.12.6.6 Variation 6: Preparation of Pyrroles with Multiple Sulfur Substituents;382
1.9.1.1.4.1.1.12.7;9.13.5.4.1.1.12.7 Method 7: Selanylpyrrole Synthesis;384
1.9.1.1.4.1.2;9.13.5.4.1.2 Substitution of N-Hydrogen;385
1.9.1.1.4.1.2.1;9.13.5.4.1.2.1 Method 1: N-Acylation;385
1.9.1.1.4.1.2.2;9.13.5.4.1.2.2 Method 2: N-Alkylation and -Allylation;385
1.9.1.1.4.1.2.3;9.13.5.4.1.2.3 Method 3: N-Alkenylation;387
1.9.1.1.4.1.2.4;9.13.5.4.1.2.4 Method 4: N-Arylation;388
1.9.1.1.4.1.2.5;9.13.5.4.1.2.5 Method 5: N-Amination and -Phosphinylation;389
1.9.1.1.4.2;9.13.5.4.2 Modification of Substituents;390
1.9.1.1.4.2.1;9.13.5.4.2.1 Modification of C-Acyl Substituents;391
1.9.1.1.4.2.1.1;9.13.5.4.2.1.1 Method 1: Reduction of 2- or 3-Acylpyrroles to 2- or 3-Alkylpyrroles with Hydrides, Zinc, or Hydrazine as Reductant;391
1.9.1.1.4.2.1.2;9.13.5.4.2.1.2 Method 2: Addition and Condensation Reactions of Acyl Groups;395
1.9.1.1.4.2.1.3;9.13.5.4.2.1.3 Method 3: Rearrangement of Acyl Groups;398
1.9.1.1.4.2.2;9.13.5.4.2.2 Modification of C-Alkyl Substituents;400
1.9.1.1.4.2.2.1;9.13.5.4.2.2.1 Method 1: Substitution Reactions of Mannich Bases;400
1.9.1.1.4.2.2.2;9.13.5.4.2.2.2 Method 2: Alkylation of a-Methylene Substituents;401
1.9.1.1.4.2.2.3;9.13.5.4.2.2.3 Method 3: Oxidation of a-Methylene Substituents;405
1.9.1.1.4.2.3;9.13.5.4.2.3 Modification of C-Vinyl Substituents;408
1.9.1.1.4.2.3.1;9.13.5.4.2.3.1 Method 1: Arylation by Heck Reaction;408
1.9.1.1.4.2.3.2;9.13.5.4.2.3.2 Method 2: Pyrrolecarbaldehyde Synthesis via Osmium(VIII) Oxide Oxidation;409
1.9.1.1.4.2.4;9.13.5.4.2.4 Modification of C-Nitropyrroles by Reductive Acylation;410
1.9.1.1.4.2.4.1;9.13.5.4.2.4.1 Method 1: Synthesis of 2- and 3-(Acylamino)-1H-pyrroles from 2- and 3-Nitro-1H-pyrroles and Acid Anhydrides;410
1.9.1.1.4.2.5;9.13.5.4.2.5 Modification of N-Substituents;412
1.9.1.1.4.2.5.1;9.13.5.4.2.5.1 Method 1: Synthesis of 1-(Hydroxymethyl)pyrrole Derivatives by Nucleophilic Addition to 1-Acylpyrroles;412
1.9.1.1.4.2.5.2;9.13.5.4.2.5.2 Method 2: Conjugate Addition to a,ß-Unsaturated 1-Acylpyrroles;412
1.9.1.1.4.2.5.2.1;9.13.5.4.2.5.2.1 Variation 1: Chiral Epoxide Synthesis;412
1.9.1.1.4.2.5.2.2;9.13.5.4.2.5.2.2 Variation 2: Enantioselective Addition of Carbon Nucleophiles;414
1.9.1.1.4.2.5.3;9.13.5.4.2.5.3 Method 3: Hydroformylation of 1-Allylpyrrole;417
1.10;Volume 16: Six-Membered Hetarenes with Two Identical Heteroatoms;438
1.10.1;16.9 Product Class 9: Cinnolines;438
1.10.1.1;16.9.5 Cinnolines;438
1.10.1.1.1;16.9.5.1 Synthesis by Ring-Closure Reactions;439
1.10.1.1.1.1;16.9.5.1.1 By Annulation to an Arene;439
1.10.1.1.1.1.1;16.9.5.1.1.1 By Formation of Two N--C Bonds;439
1.10.1.1.1.1.1.1;16.9.5.1.1.1.1 Fragments Arene-C--C and N--N;439
1.10.1.1.1.1.1.1.1;16.9.5.1.1.1.1.1 Method 1: Condensation of Quinones with Hydrazine;439
1.10.1.1.1.1.1.1.2;16.9.5.1.1.1.1.2 Method 2: Condensation of 1-Acyl-8-nitronaphthalenes with Hydrazine;441
1.10.1.1.1.1.1.1.3;16.9.5.1.1.1.1.3 Method 3: Cinnolin-3-amines via a Diels–Alder–Ene Sequence;441
1.10.1.1.1.1.2;16.9.5.1.1.2 By Formation of One N--C and One C--C Bond;443
1.10.1.1.1.1.2.1;16.9.5.1.1.2.1 Fragments Arene-N--N and C--C;443
1.10.1.1.1.1.2.1.1;16.9.5.1.1.2.1.1 Method 1: Synthesis of Cinnoline-3-carboxylates;443
1.10.1.1.1.1.2.1.2;16.9.5.1.1.2.1.2 Method 2: Synthesis of Pyridazinocinnolines;443
1.10.1.1.1.1.3;16.9.5.1.1.3 By Formation of One N--N Bond;444
1.10.1.1.1.1.3.1;16.9.5.1.1.3.1 Fragment N-Arene-Arene-N;444
1.10.1.1.1.1.3.1.1;16.9.5.1.1.3.1.1 Method 1: Condensation of Substituted Biaryls;444
1.10.1.1.1.1.3.1.1.1;16.9.5.1.1.3.1.1.1 Variation 1: Condensation of 2-Amino-2'-Nitrobiaryls;444
1.10.1.1.1.1.3.1.1.2;16.9.5.1.1.3.1.1.2 Variation 2: Cyclization of 2-Amino-3-(2-nitroaryl)quinolines;446
1.10.1.1.1.1.3.1.2;16.9.5.1.1.3.1.2 Method 2: Cyclization of 2,2'-Dinitrobiaryls;447
1.10.1.1.1.1.3.1.2.1;16.9.5.1.1.3.1.2.1 Variation 1: Reductive Cyclization of 2,2'-Dinitrobiaryls;448
1.10.1.1.1.1.3.1.2.2;16.9.5.1.1.3.1.2.2 Variation 2: Base-Catalyzed Cyclization of 2,2'-Dinitrobiphenyls;451
1.10.1.1.1.1.3.1.3;16.9.5.1.1.3.1.3 Method 3: Photooxidation of 3-(2-Aminophenyl)quinolin-2-amines;452
1.10.1.1.1.1.3.2;16.9.5.1.1.3.2 Fragment N-Arene-C--C--N;452
1.10.1.1.1.1.3.2.1;16.9.5.1.1.3.2.1 Method 1: Synthesis of Cinnoline Betaines;452
1.10.1.1.1.1.3.2.2;16.9.5.1.1.3.2.2 Method 2: Cyclization of 2-(Dinitrophenyl)alk-1-ene-1,1-diamines;453
1.10.1.1.1.1.4;16.9.5.1.1.4 By Formation of One N--C Bond;454
1.10.1.1.1.1.4.1;16.9.5.1.1.4.1 Fragment N--N-Arene-C--C;454
1.10.1.1.1.1.4.1.1;16.9.5.1.1.4.1.1 Method 1: Cyclization of Diazotized Anilines;454
1.10.1.1.1.1.4.1.1.1;16.9.5.1.1.4.1.1.1 Variation 1: Cyclization of Diazotized 2-Arylanilines;454
1.10.1.1.1.1.4.1.1.2;16.9.5.1.1.4.1.1.2 Variation 2: Cyclization of 2-(2,2-Difluorovinyl)anilines;456
1.10.1.1.1.1.4.1.2;16.9.5.1.1.4.1.2 Method 2: Cyclization of Diazotized 2-Acylanilines;457
1.10.1.1.1.1.4.1.3;16.9.5.1.1.4.1.3 Method 3: Cyclization of Diazotized Aryldifurylmethanes;458
1.10.1.1.1.1.4.1.4;16.9.5.1.1.4.1.4 Method 4: Cyclization of Alkynylanilines;459
1.10.1.1.1.1.4.1.4.1;16.9.5.1.1.4.1.4.1 Variation 1: Cyclization of Diazotized 2-Alkynylanilines;459
1.10.1.1.1.1.4.1.4.2;16.9.5.1.1.4.1.4.2 Variation 2: Cyclization of Diazotized 2-Diynylanilines;461
1.10.1.1.1.1.4.1.5;16.9.5.1.1.4.1.5 Method 5: Cyclization of (2-Alkynylaryl)- or (2-Acylaryl)triazenes;463
1.10.1.1.1.1.4.1.5.1;16.9.5.1.1.4.1.5.1 Variation 1: Cyclization of (2-Alkynylaryl)triazenes;463
1.10.1.1.1.1.4.1.5.2;16.9.5.1.1.4.1.5.2 Variation 2: Cyclization of (2-Acylaryl)triazenes;468
1.10.1.1.1.1.4.1.6;16.9.5.1.1.4.1.6 Method 6: Cyclization of (6-Oxocyclohexa-2,4-dienylidene)malononitrile Hydrazones;469
1.10.1.1.1.1.4.2;16.9.5.1.1.4.2 Fragment N--N--C--C-Arene;470
1.10.1.1.1.1.4.2.1;16.9.5.1.1.4.2.1 Method 1: Cyclization of Aryl-Substituted Heterocyclic Amines;470
1.10.1.1.1.1.4.2.1.1;16.9.5.1.1.4.2.1.1 Variation 1: Cyclization of Diazotized 3-Aminothiophenes;470
1.10.1.1.1.1.4.2.1.2;16.9.5.1.1.4.2.1.2 Variation 2: Cyclization of Diazotized 5-Amino-4-arylpyrazoles;472
1.10.1.1.1.1.4.2.1.3;16.9.5.1.1.4.2.1.3 Variation 3: Cyclization of Diazotized 3-Amino-4-arylmaleimides;473
1.10.1.1.1.1.4.2.2;16.9.5.1.1.4.2.2 Method 2: Cyclization of 2-Diazo-3-(haloaryl)-3-hydroxypropanoates;473
1.10.1.1.1.1.5;16.9.5.1.1.5 By Formation of One C--C Bond;474
1.10.1.1.1.1.5.1;16.9.5.1.1.5.1 Fragment Arene-N--N--C--C;474
1.10.1.1.1.1.5.1.1;16.9.5.1.1.5.1.1 Method 1: Cyclization of Phenylhydrazones;474
1.10.1.1.1.1.5.1.1.1;16.9.5.1.1.5.1.1.1 Variation 1: Cyclization of Oxomalonic Acid Derivatives;475
1.10.1.1.1.1.5.1.1.2;16.9.5.1.1.5.1.1.2 Variation 2: Synthesis of 3-Aroyl- or 4-Arylcinnolines;476
1.10.1.1.1.1.5.1.1.3;16.9.5.1.1.5.1.1.3 Variation 3: Synthesis of 3-Azolylcinnolines from Chloromethyl Ketones;479
1.10.1.1.1.1.5.1.1.4;16.9.5.1.1.5.1.1.4 Variation 4: Synthesis of 4-Alkyl-Substituted Cinnolines;480
1.10.1.1.2;16.9.5.2 Synthesis by Ring Transformation;481
1.10.1.1.2.1;16.9.5.2.1 Method 1: From 2H-Indazole Ring Enlargement;481
1.10.1.1.3;16.9.5.3 Synthesis by Aromatization;481
1.10.1.1.3.1;16.9.5.3.1 Method 1: Aromatization of Dihydrocinnolines;481
1.10.1.1.4;16.9.5.4 Synthesis by Substituent Modification;482
1.10.1.1.4.1;16.9.5.4.1 Substitution of Existing Substituents;482
1.10.1.1.4.1.1;16.9.5.4.1.1 Of Hydrogen;482
1.10.1.1.4.1.1.1;16.9.5.4.1.1.1 Method 1: By Lithiation;482
1.10.1.1.4.1.2;16.9.5.4.1.2 Of Heteroatoms;483
1.10.1.1.4.1.2.1;16.9.5.4.1.2.1 Method 1: By Metal–Halogen Exchange;483
1.10.1.1.4.1.2.2;16.9.5.4.1.2.2 Method 2: By Carbon Substituents via Cross-Coupling Reactions;484
1.10.1.1.4.1.2.3;16.9.5.4.1.2.3 Method 3: By Heteroatom Nucleophiles via Nucleophilic Substitution;487
1.10.1.1.4.1.2.3.1;16.9.5.4.1.2.3.1 Variation 1: Substitution of a Hydroxy Group by a Halogen;487
1.10.1.1.4.1.2.3.2;16.9.5.4.1.2.3.2 Variation 2: Introduction of Chalcogen Substituents;487
1.10.1.1.4.1.2.3.3;16.9.5.4.1.2.3.3 Variation 3: Introduction of Nitrogen Substituents;490
1.10.1.1.4.2;16.9.5.4.2 Modification of Existing Substituents;492
1.10.1.1.4.2.1;16.9.5.4.2.1 Of Carbon Substituents;492
1.10.1.1.4.2.1.1;16.9.5.4.2.1.1 Method 1: Of Carboxylic Acids and Derivatives;492
1.10.1.1.4.2.1.2;16.9.5.4.2.1.2 Method 2: Of Ketones, Aldehydes, and Derivatives;493
1.10.1.1.4.2.2;16.9.5.4.2.2 Of Heteroatom Substituents;495
1.10.1.1.4.2.2.1;16.9.5.4.2.2.1 Method 1: Of Sulfur-Containing Groups;495
1.10.1.1.4.2.2.2;16.9.5.4.2.2.2 Method 2: Of Amines;496
1.10.1.1.4.3;16.9.5.4.3 Addition Reactions;498
1.10.1.1.4.3.1;16.9.5.4.3.1 Method 1: Addition of Organic Groups;498
1.10.1.1.4.3.2;16.9.5.4.3.2 Method 2: Addition of Heteroatoms;499
1.10.2;16.23 Product Class 23: Diphosphinines;504
1.10.2.1;16.23.4 Diphosphinines;504
1.10.2.1.1;16.23.4.1 1,2-Diphosphinines;504
1.10.2.1.1.1;16.23.4.1.1 Method 1: Synthesis of a 1,2-Dihydro-1,2-diphosphinine Derivative by Dimerization;504
1.10.2.1.1.2;16.23.4.1.2 Method 2: Synthesis of a 1,2-Dihydro-1,2-diphosphinine Chelate Complex with Palladium(II) Chloride;505
1.10.2.1.2;16.23.4.2 1,3-Diphosphinines;507
1.10.2.1.3;16.23.4.3 1,4-Diphosphinines;507
1.11;Author Index;510
1.12;Abbreviations;540
1.13;List of All Volumes;546
5.2.1 Product Subclass 1: Tin Hydrides
K. Tchabanenko General Introduction
Like silicon and carbon, tin is a group 14 element, but with a more metallic character. This is reflected in the nomenclature of organotin compounds, which can be regarded as derivatives of the metal and named by using “tin” as a suffix, so that, for example, Bu4Sn can be named “tetrabutyltin” and Bu3SnH can be named “tributyltin hydride”. In an alternative system recommended by the International Union of Pure and Applied Chemistry, organotin compounds are named as derivatives of stannane [tin(IV) hydride], so that, for example, Ph3SnH is named “triphenylstannane”. Both the tin- and stannane-type nomenclature are used throughout this section, in common with practice in the general literature. The compounds discussed in this section contain up to three alkyl or aryl groups bonded to a tin atom, with the remainder of the four valences being occupied by hydrogen atoms.[1,2] Whereas stannane (SnH4), the parent compound, is highly unstable, even at room temperature, and undergoes rapid decomposition to tin and molecular hydrogen,[3] its alkyl or aryl derivatives are somewhat more stable. Monoorganostannanes (R1SnH3) can be stored for a few days at room temperature, whereas diorganostannanes (R12SnH2) are stable for several weeks, and triorganostannanes (R13SnH) can be stored almost indefinitely. Alkylstannanes are generally more stable than the corresponding arylstannanes, and an increase in the bulk of the alkyl substituents leads to greater thermal stability. The usefulness of organotin hydrides is to some degree limited by the toxic hazards they present, which depend on their volatility and degree of substitution.[1,4] Tributylstannane (tributyltin hydride; Bu3SnH) is less toxic than the more volatile triethyl and trimethyl analogues, and it is therefore the most widely used organostannane. This compound is best prepared by the reduction of hexabutyldistannoxane [bis(tributylstannyl) ether] with poly(methylhydrosiloxane) (? Scheme 1).[5] Other alkyl- and arylstannanes are usually prepared by the reduction of the corresponding organotin halides with lithium aluminum hydride[6–15] or sodium borohydride.[16–18] Another useful approach to organostannanes involves the treatment of organostannylated metal derivatives (R13SnLi, R13SnNa, or R13SnMgBr) with water.[12,19–23] This method can be used to prepare tributylstannane-d1 (tributyltin deuteride).[24] Alternatively, triorganostannanes can be prepared by reduction of the corresponding hexaorganodistannanes with metal hydrides (? Scheme 1).[25] ? Scheme 1 Methods for the Preparation of Tin Hydrides[5–25] The principal applications of organotin hydrides in organic synthesis include mediation of free-radical dehalogenation, deoxygenation, addition, cyclization, and rearrangement reactions, and hydrostannylation of unsaturated functional groups (? Scheme 2). The chemistry, preparation, and reactions of organostannanes have been reviewed many times;[1,2,26–29] in particular, organotin-mediated radical reactions[30–35] and transition-metal-catalyzed hydrostannylation reactions[36–39] have received a great deal of attention. ? Scheme 2 Some Applications of Tin Hydrides in Organic Chemistry[30–39] In general, stannanes are clear, colorless liquids that are frequently purified by distillation at reduced pressures. All show intense, sharp Sn—H IR absorption bands (e.g., SnH4, 1898 cm-1; BuSnH3, 1862 cm-1; Bu2SnH2, 1835 cm-1; and BuSnH3, 1813 cm-1).[40] In the 1H NMR spectra of alkylstannanes, resonances of hydrogen atoms bound to tin occur in the region d 3.85–4.80.[40–44] The addition of electronegative substituents to the tin atom shifts the signal to higher values of d [e.g., d 7.42 for Bu2SnHCl]. 119Sn NMR spectra and 119Sn–13C coupling constants are also useful in the characterization of organotin compounds. Because tin has 10 naturally occurring isotopes, tin-containing compounds can be easily recognized by mass spectrometry. SAFETY: Organotin compounds exhibit a range of toxicities,[1,4] with a general tendency for heavier and less volatile tributyl- and triphenylstannanes to be less toxic than the corresponding lighter and more volatile triethyl or trimethyl analogues, which should not be used in large-scale experiments. Tributylstannanes cause skin burns and can be absorbed through the skin. It is recommended that all organotin hydrides are handled with care in an adequate fume hood, and that protective clothing and gloves are worn at all times. Appropriate waste-disposal procedures should be followed for all tin-contaminated chemicals and solvents. The boiling points of commonly used stannanes are collected in ? Table 1. ? Table 1 Boiling Points of Common Tin Hydrides[5–8,15,45,46] Tin Hydride bp (°C) Pressure (Torr) Ref MeSnH3 0 760 [6] Me2SnH2 35 760 [6] Me3SnH 59 760 [6] Et3SnH 142 760 [7] Pr3SnH 59–54 4 [5] BuSnH3 99–101 760 [8] Bu2SnH2 75–76 12 [45] Bu3SnH 68–74 0.3 [15] 65–67 0.6 [45] Bu3SnD 70–74 0.5 [46] Ph3SnH 168–172 0.5 [8] Although many organotin hydrides are commercially available, better results are generally obtained with freshly prepared reagents. Some convenient and reliable methods for the synthesis of tin hydrides, including the most commonly used of these reagents, are discussed below. Synthesis of Product Subclass 1
5.2.1.1 Method 1: Reduction of Tin Halides
Organotin hydrides are generally synthesized by reduction of the corresponding organotin halides with metal hydrides. Lithium aluminum hydride is by far the most commonly used reducing agent,[6–15] although other hydride sources such as dialkylaluminum hydrides,[47] aluminum amalgam,[48] sodium borohydride,[17–19] or potassium borohydride[49] can also be used. 5.2.1.1.1 Variation 1: Reduction of Tin Halides with Lithium Aluminum Hydride
The reduction of alkyl- and aryltin chlorides or bromides by lithium aluminum hydride in ethereal solvents can be used to prepare the corresponding mono-, di-, or triorganostannanes (? Table 2).[6,10,13–15] In general, the reactions proceed smoothly at room temperature to give products of high purity. Diethyl ether is normally the solvent of choice, but other ethereal solvents such as dibutyl ether, diglyme, or 1,4-dioxane can be used if separation of the products from diethyl ether is difficult or if high reaction temperatures are required. The preparation of volatile tin hydrides or the parent stannane requires the use of specialized vacuum lines.[14] Deuterated forms of tin hydrides can be readily prepared by reduction with lithium aluminum deuteride.[50] ? Table 2 Reduction of Tin Chlorides with Lithium Aluminum Hydride[6–8,12,15] Entry Reactant Solvent Product Yield...