Fuchs / Shabat / Sneddon | Functions of a Complex Variable and Some of Their Applications | E-Book | sack.de
E-Book

E-Book, Englisch, 458 Seiten, Web PDF

Reihe: International Series in Pure and Applied Mathematics

Fuchs / Shabat / Sneddon Functions of a Complex Variable and Some of Their Applications


1. Auflage 2014
ISBN: 978-1-4831-5505-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 458 Seiten, Web PDF

Reihe: International Series in Pure and Applied Mathematics

ISBN: 978-1-4831-5505-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Functions of a Complex Variable and Some of Their Applications, Volume 1, discusses the fundamental ideas of the theory of functions of a complex variable. The book is the result of a complete rewriting and revision of a translation of the second (1957) Russian edition. Numerous changes and additions have been made, both in the text and in the solutions of the Exercises. The book begins with a review of arithmetical operations with complex numbers. Separate chapters discuss the fundamentals of complex analysis; the concept of conformal transformations; the most important of the elementary functions; and the complex potential for a plane vector field and the application of the simplest methods of function theory to the analysis of such a field. Subsequent chapters cover the fundamental apparatus of the theory of regular functions, i.e. basic integral theorems and expansions in series; the general concept of an analytic function; applications of the theory of residues; and polygonal domain mapping. This book is intended for undergraduate and postgraduate students of higher technical institutes and for engineers wishing to increase their knowledge of theory.

Fuchs / Shabat / Sneddon Functions of a Complex Variable and Some of Their Applications jetzt bestellen!

Weitere Infos & Material


1;Front Cover;1
2;Functions of a Complex Variable and some of their applications;6
3;Copyright Page;7
4;Table of Contents;8
5;From the foreword to the first edition;12
6;Foreword to the English edition;16
7;INTRODUCTION;18
7.1;1. Complex numbers;18
7.2;2. The simplest operations;19
7.3;3. Multiplication, division, integral powers and roots;25
7.4;4. Complex powers. Logarithms;31
7.5;Exercises;34
8;CHAPTER 1. THE FUNDAMENTAL IDEAS OF COMPLEX ANALYSIS;37
8.1;5. The sphere of complex numbers;37
8.2;6. Domains and their boundaries;39
8.3;7. The limit of a sequence;42
8.4;8. Complex functions of a real variable;45
8.5;9. The complex form of an oscillation;49
8.6;10. Functions of a complex variable;52
8.7;11. Examples;53
8.8;12. The limit of a function;58
8.9;13. Continuity;59
8.10;14. The Cauchy–Riemann conditions;62
8.11;Exercises;66
9;CHAPTER 2. CONFORMAL MAPPINGS;69
9.1;15. Conformal mappings;69
9.2;16. Conformal mapping of domains;73
9.3;17. Geometric significance of the differential dw;75
9.4;18. Bilinear mappings;77
9.5;19. The circle property;81
9.6;20. Invariance of the conjugate points;82
9.7;21. Conditions determining bilinear mappings;86
9.8;22. Particular examples;88
9.9;23. General principles of the theory of conformal mapping;91
9.10;Exercises;95
10;CHAPTER 3. ELEMENTARY FUNCTIONS;97
10.1;24. The functions w = zn and their Riemann surfaces;97
10.2;25. The concept of a regular branch. The functions w = n/z;102
10.3;26. The function w = 1/2[z+(1/z)] and its Riemann surface;106
10.4;27. Examples;109
10.5;28. The Joukowski profile;115
10.6;29. The exponential function and its Riemann surface;118
10.7;30. The logarithmic function;120
10.8;31. Trigonometrical and hyperbolic functions;122
10.9;32. The general power;127
10.10;33. Examples;129
10.11;Exercises;133
11;CHAPTER 4. APPLICATIONS TO THE THEORY OF PLANE FIELDS;136
11.1;34. Plane vector fields;136
11.2;35. Examples of plane fields;138
11.3;36. Properties of plane vector fields;142
11.4;37. The force function and potential function;147
11.5;38. The complex potential in electrostatics;156
11.6;39. The complex potential in hydrodynamics and heat conduction;162
11.7;40. The method of conformal mapping;167
11.8;41. The field in a strip;169
11.9;42. The field in a ring domain;172
11.10;43. Streamlining an infinite curve;176
11.11;44. The problem of complete streamlining. Chaplygin's condition;179
11.12;45. Other methods;186
11.13;Exercises;191
12;CHAPTER 5. THE INTEGRAL REPRESENTATION OF A REGULAR FUNCTION. HARMONIC FUNCTIONS;193
12.1;46. The integral of a function of a complex variable;193
12.2;47. Cauchy's integral theorem;195
12.3;48. Cauchy's residue theorem. Chaplygin's formula;200
12.4;49. The indefinite integral;205
12.5;50. Integration of powers of (z—a);208
12.6;51. Cauchy's integral formula;212
12.7;52. The existence of higher derivatives;214
12.8;53. Properties of regular functions;217
12.9;54. Harmonic functions;222
12.10;55. Dirichlet's problem;226
12.11;56. The integrals of Poisson and Schwarz;232
12.12;57. Applications to the theory of plane fields;235
12.13;Exercises;241
13;CHAPTER 6. REPRESENTATION OF REGULAR FUNCTIONS BY SERIES;244
13.1;58. Series in the complex domain;244
13.2;59. Weierstrass's theorem;247
13.3;60. Power series;250
13.4;61. Representation of regular functions by Taylor series;254
13.5;62. The zeros of a regular function. The uniqueness theorem;258
13.6;63. Analytic continuation. Analytic functions;260
13.7;64. Laurent series;266
13.8;65. Isolated singularities;275
13.9;66. Removable singularities;276
13.10;67. Poles;278
13.11;68. Essential singularities;283
13.12;69. Behaviour of a function at infinity;287
13.13;70. Joukowski's theorem on the thrust on an aerofoil;291
13.14;71. The simplest classes of analytic functions;297
13.15;Exercises;300
14;CHAPTER 7. APPLICATIONS OF THE THEORY OF RESIDUES;303
14.1;72. Evaluation of integrals of the form 2...;303
14.2;73. Integrals of the form ....;306
14.3;74. Other integrals;313
14.4;75. Integrals involving multi-valued functions;322
14.5;76. The representation of functions by integrals;331
14.6;77. The logarithmic residue;337
14.7;78. Expansion of cot z in simple fractions. Mittag-Leffler's theorem;344
14.8;79. Expansion of sin z as an infinite product. Weierstrass's theorem;350
14.9;80. Euler's gamma function G(z);357
14.10;81. Integral representations of the G-function;362
14.11;Exercises;368
15;CHAPTER 8. MAPPING OF POLYGONAL DOMAINS;371
15.1;82. The symmetry principle;371
15.2;83. Illustrative examples;376
15.3;84. The Schwarz–Christoffel integral;385
15.4;85. Degenerate cases;392
15.5;86. Illustrative examples;398
15.6;87. Determination of the field at the edges of a condenser. Rogowski's condenser;405
15.7;88. The field of angular electrodes;410
15.8;89. The mapping of rectangular domains. Introduction to elliptic integrals;413
15.9;90. Introduction to Jacobian elliptic functions;417
15.10;Exercises;421
16;ANSWERS AND HINTS FOR SOLUTION OF EXERCISES;425
17;INDEX;446



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.