E-Book, Englisch, 236 Seiten, eBook
Fu Low-Rank and Sparse Modeling for Visual Analysis
2014
ISBN: 978-3-319-12000-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 236 Seiten, eBook
ISBN: 978-3-319-12000-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book provides a view of low-rank and sparse computing, especially approximation, recovery, representation, scaling, coding, embedding and learning among unconstrained visual data. The book includes chapters covering multiple emerging topics in this new field. It links multiple popular research fields in Human-Centered Computing, Social Media, Image Classification, Pattern Recognition, Computer Vision, Big Data, and Human-Computer Interaction. Contains an overview of the low-rank and sparse modeling techniques for visual analysis by examining both theoretical analysis and real-world applications.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Nonlinearly Structured Low-Rank Approximation.- Latent Low-Rank Representation.- Scalable Low-Rank Representation.- Low-Rank and Sparse Dictionary Learning.- Low-Rank Transfer Learning.- Sparse Manifold Subspace Learning.- Low Rank Tensor Manifold Learning.- Low-Rank and Sparse Multi-Task Learning.- Low-Rank Outlier Detection.- Low-Rank Online Metric Learning.