Fu | Digital Pattern Recognition | E-Book | sack.de
E-Book

E-Book, Englisch, Band 10, 206 Seiten, eBook

Reihe: Communication and Cybernetics

Fu Digital Pattern Recognition


1976
ISBN: 978-3-642-96303-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 10, 206 Seiten, eBook

Reihe: Communication and Cybernetics

ISBN: 978-3-642-96303-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



During the past fifteen years there has been a considerable growth of interest in problems of pattern recognition. Contributions to the blossom of this area have come from many disciplines, including statistics, psychology, linguistics, computer science, biology, taxonomy, switching theory, communication theory, control theory, and operations research. Many different approaches have been proposed and a number of books have been published. Most books published so far deal with the decision-theoretic (or statistical) approach or the syntactic (or linguistic) approach. Since the area of pattern recognition is still far from its maturity, many new research results, both in theory and in applications, are continuously produced. The purpose of this monograph is to provide a concise summary of the major recent developments in pattern recognition. The five main chapters (Chapter 2-6) in this book can be divided into two parts. The first three chapters concern primarily with basic techniques in pattern recognition. They include statistical techniques, clustering analysis and syntactic techniques. The last two chapters deal with applications; namely, picture recognition, and speech recognition and understanding. Each chapter is written by one or two distinguished experts on that subject. The editor has not attempted to impose upon the contributors to this volume a uniform notation and terminol ogy, since such notation and terminology does not as yet exist in pattern recognition.

Fu Digital Pattern Recognition jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Introduction.- 1.1 What is Pattern Recognition?.- 1.2 Approaches to Pattern Recognition.- 1.3 Basic Non-Parametric Decision — Theoretic Classification Methods.- 1.3.1 Linear Discriminant Functions.- 1.3.2 Minimum Distance Classifier.- 1.3.3 Piecewise Linear Discriminant Functions (Nearest Neighbor Classification).- 1.3.4 Polynomial Discriminant Functions.- 1.4 Training in Linear Classifiers.- 1.5 Bayes (Parametric) Classification.- 1.6 Sequential Decision Model for Pattern Classification.- 1.7 Bibliographical Remarks.- References.- 2. Topics in Statistical Pattern Recognition.- 2.1 Nonparametric Discrimination.- 2.1.1 Introduction.- 2.1.2 The Deterministic Problem.- 2.1.3 The Bayesian Problem.- 2.1.4 Probability of Error Estimation.- 2.1.5 Density Estimation.- 2.2 Learning with Finite Memory.- 2.2.1 Time-Varying Finite Memory.- 2.2.2 Time-Invariant Finite Memory.- 2.3 Two-Dimensional Patterns and Their Complexity.- 2.3.1 Pattern Complexity.- Kolmogorov Complexity.- 2.3.2 Inference of Classification Functions.- References.- 3. Clustering Analysis.- 3.1 Introduction.- 3.1.1 Relations between Clustering and Pattern Recognition.- Definition of Classification and Identification.- A Definition of Clustering.- 3.1.2 A General Model of Clustering.- 3.2 The Initial Description.- 3.2.1 Interpretation of the Initial Structured Data.- 3.2.2 Resemblance and Dissemblance Measures.- Definition of a Similarity Measure and of a Dissimilarity Measure.- Quantitative Dissemblance Measures.- Qualitative Resemblance Measure.- Qualitative Ordinal Coding.- Binary Distance Measures.- Resemblance Measures between Elementary Variables.- Resemblance Measures between Groups of Objects.- 3.3 Properties of a Cluster, a Clustering Operator and a Clustering Process.- 3.3.1 Properties of Clusters and Partitions.- Homogeneity.- Stability of a Cluster or of a Partition.- 3.3.2 Properties of a Clustering Identification Operator ? or of a.- Clustering Process.- T Admissibility.- P Admissibility.- 3.4 The Main Clustering Algorithms.- 3.4.1 Hierarchies.- Definition of a Hierarchy.- Definition and Properties of an Ultrametric.- 3.4.2 Construction of a Hierarchy.- Roux Algorithm.- Lance and William General Algorithm.- Single Linkage.- Complete Linkage.- Average Linkage.- Centroid Method.- Ward Technique.- The Chain Effect.- 3.4.3 The Minimum Spanning Tree.- Prim Algorithm.- Kruskal Algorithm.- 3.4.4 Identification from a Hierarchy or a Minimum Spanning Tree.- 3.4.5 A Partition and the Corresponding Symbolic Representations.- Algorithm ?.- Algorithm ?.- 3.4.6 Optimization of a Criterion.- 3.4.7 Cross-Partitions.- Definition of the Strong Patterns.- Fuzzy Sets.- Presentation of the Table of the “Strong Patterns”.- 3.5 The Dynamic Clusters Method.- 3.5.1 An Example of h, g, ? in Hierarchies.- 3.5.2 Construction of h, g, ? in Partitioning.- 3.5.3 The Dynamic Clusters Algorithm.- 3.5.4 The Symbolic Description is a Part of X or ?n.- Non-Sequential Techniques.- Sequential Techniques.- 3.5.5 Partitions and Mixed Distributions.- The Dynamic Cluster Approach.- Gaussian Distributions.- 3.5.6 Partitions and Factor Analysis.- The Dynamic Clusters Algorithm.- An Experiment: Find Features on Letters.- 3.6 Adaptive Distances in Clustering.- 3.6.1 Descriptions and Results of the Adaptive Distance Dynamic Cluster Method.- The Criterion.- The Method.- The Identification Function ?: Lk?Pk.- The Symbolic Description Function g: PkLk.- Convergence Properties.- 3.6.2 A Generalization of the Adaptive Distance Algorithm.- The Criterion.- The Algorithm.- Convergence of the Algorithm.- 3.7 Conclusion and Future Prospects.- References.- 4. Syntactic (Linguistic) Pattern Recognition.- 4.1 Syntactic (Structural) Approach to Pattern Recognition.- 4.2 Linguistic Pattern Recognition System.- 4.3 Selection of Pattern Primitives.- 4.3.1 Primitive Selection Emphasizing Boundaries or Skeletons.- 4.3.2 Pattern Primitives in Terms of Regions.- 4.4 Pattern Grammar.- 4.5 High-Dimensional Pattern Grammars.- 4.5.1 General Discussion.- 4.5.2 Special Grammars.- 4.6 Syntax Analysis as Recognition Procedure.- 4.6.1 Recognition of Finite-State Languages.- 4.6.2 Syntax Analysis of Context-Free Languages.- 4.7 Concluding Remarks.- References.- 5. Picture Recognition.- 5.1 Introduction.- 5.2 Properties of Regions.- 5.2.1 Analysis of the Power Spectrum.- 5.2.2 Analysis of Local Property Statistics.- 5.2.3 Analysis of Joint Gray Level Statistics.- 5.2.4 Grayscale Normalization.- 5.3 Detection of Objects.- 5.3.1 Template Matching.- 5.3.2 Edge Detection.- 5.4 Properties of Detected Objects.- 5.4.1 Moments.- 5.4.2 Projections and Cross-Sections.- 5.4.3 Geometrical Normalization.- 5.5 Object Extraction.- 5.5.1 Thresholding.- 5.5.2 Region Growing.- 5.5.3 Tracking.- 5.6 Properties of Extracted Objects.- 5.6.1 Connectedness.- 5.6.2 Size, Compactness, and Convexity.- 5.6.3 Arcs, Curves, and Elongatedness.- 5.7 Representation of Objects and Pictures.- 5.7.1 Borders.- 5.7.2 Skeletons.- 5.7.3 Relational Structures.- References.- 6. Speech Recognition and Understanding.- 6.1 Principles of Speech, Recognition, and Understanding.- 6.1.1 Introduction.- 6.1.2 The Nature of Speech Communication.- 6.1.3 Approaches to Automatic Recognition.- 6.2 Recent Developments in Automatic Speech Recognition.- 6.2.1 Introduction.- 6.2.2 Isolated Word Recognition.- 6.2.3 Continuous Speech Recognition.- 6.3 Speech Understanding.- 6.3.1 Introduction.- 6.3.2 Relevant Sources of Knowledge.- 6.3.3 Present Speech Understanding Systems.- 6.4 Assessment of the Future.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.