Buch, Englisch, 209 Seiten, Previously published in hardcover, Format (B × H): 160 mm x 240 mm, Gewicht: 366 g
Buch, Englisch, 209 Seiten, Previously published in hardcover, Format (B × H): 160 mm x 240 mm, Gewicht: 366 g
Reihe: Topological Fixed Point Theory and Its Applications
ISBN: 978-90-481-6672-5
Verlag: Springer Netherlands
Decomposable sets since T. R. Rockafellar in 1968 are one of basic notions in nonlinear analysis, especially in the theory of multifunctions. A subset K of measurable functions is called decomposable if
(Q) for all and measurable A.
This book attempts to show the present stage of "decomposable analysis" from the point of view of fixed point theory. The book is split into three parts, beginning with the background of functional analysis, proceeding to the theory of multifunctions and lastly, the decomposability property.
Mathematicians and students working in functional, convex and nonlinear analysis, differential inclusions and optimal control should find this book of interest. A good background in fixed point theory is assumed as is a background in topology.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Geometrie Algebraische Geometrie
- Mathematik | Informatik Mathematik Operations Research Spieltheorie
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Mathematische Analysis Reelle Analysis
Weitere Infos & Material
Preliminaries.- Real and vector measures.- Preliminary notions.- Upper and lower semicontinuous multifunctions.- Measurable multifunctions.- Carathéodory type multifunctions.- Fixed points property for convex-valued mappings.- Decomposable sets.- Selections.- Fixed points property.- Aumann integrals.- Selections of Aumann integrals.- Fixed points for multivalued contractions.- Operator and differential inclusions.- Decomposable analysis.