Buch, Englisch, 494 Seiten, Format (B × H): 159 mm x 244 mm, Gewicht: 1980 g
Buch, Englisch, 494 Seiten, Format (B × H): 159 mm x 244 mm, Gewicht: 1980 g
Reihe: Springer Series in Statistics
ISBN: 978-0-387-32909-3
Verlag: Springer
The past decade has seen powerful new computational tools for modeling which combine a Bayesian approach with recent Monte simulation techniques based on Markov chains. This book is the first to offer a systematic presentation of the Bayesian perspective of finite mixture modelling. The book is designed to show finite mixture and Markov switching models are formulated, what structures they imply on the data, their potential uses, and how they are estimated. Presenting its concepts informally without sacrificing mathematical correctness, it will serve a wide readership including statisticians as well as biologists, economists, engineers, financial and market researchers.
Zielgruppe
Researchers
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Biowissenschaften Biowissenschaften
- Wirtschaftswissenschaften Betriebswirtschaft Wirtschaftsmathematik und -statistik
- Naturwissenschaften Biowissenschaften Angewandte Biologie Bioinformatik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Wirtschaftswissenschaften Volkswirtschaftslehre Volkswirtschaftslehre Allgemein Ökonometrie
- Mathematik | Informatik EDV | Informatik Informatik
- Sozialwissenschaften Psychologie Psychologie / Allgemeines & Theorie Experimentelle Psychologie
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik EDV | Informatik Angewandte Informatik Bioinformatik
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik
Weitere Infos & Material
Finite Mixture Modeling.- Statistical Inference for a Finite Mixture Model with Known Number of Components.- Practical Bayesian Inference for a Finite Mixture Model with Known Number of Components.- Statistical Inference for Finite Mixture Models Under Model Specification Uncertainty.- Computational Tools for Bayesian Inference for Finite Mixtures Models Under Model Specification Uncertainty.- Finite Mixture Models with Normal Components.- Data Analysis Based on Finite Mixtures.- Finite Mixtures of Regression Models.- Finite Mixture Models with Nonnormal Components.- Finite Markov Mixture Modeling.- Statistical Inference for Markov Switching Models.- Nonlinear Time Series Analysis Based on Markov Switching Models.- Switching State Space Models.




