Dieses essential befasst sich mit der einfachen linearen Regression, der simpelsten Form von Regressionsmodellen, in der für die Modellbildung nur eine einzige Einflussvariable berücksichtigt wird. Leser finden in diesem Buch die Methode der kleinsten Quadrate zur Schätzung der Modellparameter, Residualanalysen zur Überprüfung der Modellannahmen sowie weitere statistische Verfahren zur Beurteilung des Modells. Zudem erfahren sie, wie das Modell als ein Prognoseinstrument eingesetzt werden kann. Somit erwerben Leser eine solide Grundlage zum Verständnis komplexer Regressionsansätze, bei denen mehrere Variablen die Zielgröße beeinflussen und nichtlineare Zusammenhänge vorliegen.
Frost
Einfache lineare Regression jetzt bestellen!
Zielgruppe
Professional/practitioner
Weitere Infos & Material
Definition des einfachen Regressionsmodells.- Überprüfung der Modellvoraussetzungen.- Beurteilung des Modells durch den Korrelations- und den Determinationskoeffizienten.- Regressionsgerade als ein Instrument für eine Prognose.- Umkehrregression.
Dipl.-Statistikerin Irasianty Frost ist als Dozentin für Statistik an der Hochschule Fresenius in München tätig.