Froes / Qian | Titanium in Medical and Dental Applications | Buch | 978-0-12-812456-7 | sack.de

Buch, Englisch, 654 Seiten, Format (B × H): 181 mm x 230 mm, Gewicht: 1200 g

Reihe: Woodhead Publishing Series in Biomaterials

Froes / Qian

Titanium in Medical and Dental Applications


Erscheinungsjahr 2018
ISBN: 978-0-12-812456-7
Verlag: Elsevier Science Publishing Co Inc

Buch, Englisch, 654 Seiten, Format (B × H): 181 mm x 230 mm, Gewicht: 1200 g

Reihe: Woodhead Publishing Series in Biomaterials

ISBN: 978-0-12-812456-7
Verlag: Elsevier Science Publishing Co Inc


Titanium in Medical and Dental Applications is an essential reference book for those involved in biomedical materials and advanced metals. Written by well-known experts in the field, it covers a broad array of titanium uses, including implants, instruments, devices, the manufacturing processes used to create them, their properties, corrosion resistance and various fabrication approaches. Biomedical titanium materials are a critically important part of biomaterials, especially in cases where non-metallic biomedical materials are not suited to applications, such as the case of load-bearing implants.

The book also covers the use of titanium for implants in the medical and dental fields and reviews the use of titanium for medical instruments and devices.

Froes / Qian Titanium in Medical and Dental Applications jetzt bestellen!

Zielgruppe


<p>Researchers and engineers in the field of advanced materials and medical and dental engineering; undergraduate and graduate students.</p>


Autoren/Hrsg.


Weitere Infos & Material


Section 1: Summary of Titanium Alloy mechanical properties, corrosion resistance, fabrication approaches and Alloy Design for Biomedical Use1.1: Titanium for Medical and Dental Applications, An Introduction1.2: Advances in Titanium Metal Component Fabrication, An Overview1.2 Design of Titanium Implants for Additive Manufacturing1.3: The Molecular Orbital Approach and its Application to Biomedical Titanium Alloy Design1.5 Additively Manufactured Ti-6Al-4V Lattice Structures for Medical Applications?

Section 2: Titanium for Implants, Medical2.1: Processing cannulated titanium bars for screws and nails in orthopedics: a proprietary approach2.2: Transition of surface modification of titanium for medical and dental use2.3: Modern methods of implant surface geometry modification of titanium and its alloys for enhanced biomedical characteristics2.4: Surface Modifications and Cellular Responses of Biomedical Thin Films on Titanium Implants2.5: The Effect of Nitinol on Medical Device Innovation2.6: Additive Manufacturing of Ti alloys for Biomedical Applications2.7: Titanium Spinal Fixation Devices2.8: Biocompatible beta-Ti alloys with enhanced strength due to increased oxygen content2.9: Nanostructured pure Ti for development of miniaturized biomedical implants2.10: Mechanical performance and cell response of pure titanium with ultrafine grained structure produced by severe plastic deformation2.11: 3-D Printed Ti-6Al-4V Implants2.12: Microstructure and lattice defects in ultra-fine grained biomedical alpha + beta and metastable beta Ti alloys2.13: Aluminum- and Vanadium-free Titanium Alloys for Application in Medical Engineering2.14: Ti-Nb-Zr system and its surface biofunctionalization for biomedical applications

Section 3: Titanium for Implants, DentaL3.1:Ti-6Al-4V orthopedic implants made by selective electron beam melting3.2 3D Printed Titanium Alloys of Orthopedic Applications3.3: 3D Printing of Low Modulus Titanium for Medical Applications

Section 4: Titanium Implants for Dental Applications4.1: Why Titanium in Dental Applications4.2: The role of Titanium Implants in Dentistry4.3: Titanium MIM for manufacturing of medical implants and devices

Section 5: Nitinol Applications in Medical and Dental Applications5.1: Nitinol and its Applications in Medical/Dental Device 5b5.2: NiTi shape memory alloys for medical applications


Froes, Francis
Francis H Froes, Ph.D. has been involved in the Titanium field with an emphasis on Powder Metallurgy (P/M) for more than 40 years. He was employed by a primary Titanium producer-Crucible Steel Company-where he was leader of the Titanium group. He was the program manager on a multi-million dollar US Air Force (USAF) contract on Titanium P/M. He then spent time at the USAF Materials Lab where he was supervisor of the Light Metals group (which included Titanium). This was followed by 17 years at the University of Idaho where he was a Director and Department Head of the Materials Science and Engineering Department. He has over 800 publications, in excess of 60 patents, and has edited almost 30 books-the majority on various aspects of Titanium again with an emphasis on P/M. He gave the key-note presentation at the first TDA (ITA) Conference. In recent years he has co-sponsored four TMS Symposia on Cost Effective Titanium featuring numerous papers on P/M. He is a Fellow of ASM, is a member of the Russian Academy of Science, and was awarded the Service to Powder Metallurgy by the Metal Powder Association. Recently he has been a co-author of three comprehensive papers on the Additive Manufacturing of Titanium.

Qian, Ma
Dr Ma Qian is a Distinguished Professor of the School of Engineering at Royal Melbourne Institute of Technology (RMIT University), Melbourne, Australia. His current research interests include metal additive manufacturing, powder metallurgy of light metals and alloys, solidification processing, metallic biomaterials, high entropy and medium entropy alloys, biomimetic design and lattice materials. He has published 225 peer-reviewed journal papers (nearly 100 papers on titanium), which have attracted more than 8200 Scopus citations as of November 2019 (>7300 excluding self-citations). He initiated the biennial international conference on Titanium Powder Metallurgy in 2011 (co-sponsored by Materials Australia, TiDA, TMS, JSPM and CSM) and served as the Organising Committee Chair and Conference Co-Chair for the Asia-Pacific International Conference on Additive Manufacturing (2017 and 2019). Currently, He serves as an editorial member for a number of journals, including as an Associate Editor for both Acta Materialia and Scripta Materialia. Professor Qian was also chosen as an APMI (American Powder Metallurgy Institute) Fellow in 2025, and as an ASMI (American Society of Metals International) Fellow in 2020.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.