Frigessi / Bühlmann / Vannucci | Statistical Analysis for High-Dimensional Data | Buch | 978-3-319-80073-8 | sack.de

Buch, Englisch, 306 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 487 g

Reihe: Abel Symposia

Frigessi / Bühlmann / Vannucci

Statistical Analysis for High-Dimensional Data

The Abel Symposium 2014
Softcover Nachdruck of the original 1. Auflage 2016
ISBN: 978-3-319-80073-8
Verlag: Springer International Publishing

The Abel Symposium 2014

Buch, Englisch, 306 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 487 g

Reihe: Abel Symposia

ISBN: 978-3-319-80073-8
Verlag: Springer International Publishing


This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014.

The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection.

Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

Frigessi / Bühlmann / Vannucci Statistical Analysis for High-Dimensional Data jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Some Themes in High-Dimensional Statistics: A. Frigessi et al.- Laplace Appoximation in High-Dimensional Bayesian Regression: R. Barber, M. Drton et al.- Preselection in Lasso-Type Analysis for Ultra-High Dimensional Genomic Exploration: L.C. Bergersen, I. Glad et al.- Spectral Clustering and Block Models: a Review and a new Algorithm: S. Bhattacharyya et al.- Bayesian Hierarchical Mixture Models: L. Bottelo et al.- iBATCGH; Integrative Bayesian Analysis of Transcriptomic and CGH Data: Cassese, M. Vannucci et al.- Models of Random Sparse Eigenmatrices and Bayesian Analysis of Multivariate Structure: A.J. Cron, M. West.- Combining Single and Paired End RNA-seq Data for Differential Expression Analysis: F. Feng, T.Speed et al.- An Imputation Method for Estimation the Learning Curve in Classification Problems: E. Laber et al.- Baysian Feature Allocation Models for Tumor Heterogeneity: J. Lee, P. Mueller et al.- Bayesian Penalty Mixing: The Case of a Non-Separable Penalty: V. Rockova etal.- Confidence Intervals for Maximin Effects in Inhomogeneous Large Scale Data: D. Rothenhausler et al.- Chisquare Confidence Sets in High-Dimensional Regression: S. van de Geer et al. 



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.