E-Book, Englisch, 734 Seiten, Web PDF
Freudenthal L. E. J. Brouwer Collected Works
1. Auflage 2014
ISBN: 978-1-4832-5754-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
Geometry, Analysis, Topology and Mechanics
E-Book, Englisch, 734 Seiten, Web PDF
ISBN: 978-1-4832-5754-9
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark
L. E. J. Brouwer Collected Works, Volume 2: Geometry, Analysis, Topology, and Mechanics focuses on the contributions and principles of Brouwer on geometry, topology, analysis, and mechanics, including non-Euclidean spaces, integrals, and surfaces. The publication first ponders on non-Euclidean spaces and integral theorems, lie groups, and plane transition theorem. Discussions focus on remarks on multiple integrals, force field of the non-Euclidean spaces with negative curvature, difference quotients and differential quotients, characterization of the Euclidean and non-Euclidean motion groups, and continuous one-one transformations of surfaces in themselves. The book also takes a look at vector fields on surfaces and new methods in topology, including continuous vector distributions on surfaces and orthogonal trajectories of the orbits of a one parameter plane projective group. The book then ponders on mechanics and topology of surfaces, as well as the motion of a particle on the bottom of a rotating vessel under the influence of gravitational force. The publication is a valuable reference for researchers interested in geometry, topology, analysis, and mechanics.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Geometry, Analysis, Topology and Mechanics;4
3;Copyright Page;5
4;Table of Contents;6
5;PREFACE;9
6;THE LIFE OF L.E.J. BROUWER;11
7;BIBLIOGRAPHY;17
8;CHAPTER 1. Non-euclidean spaces and integral theorems;30
8.1;1904 A2;32
8.2;1904B2;54
8.3;1904 C2;57
8.4;1906 A2;65
8.5;1919 Q2;78
8.6;1906B2;83
8.7;1906C2;102
8.8;NOTES;118
9;CHAPTER 2. Lie groups;120
9.1;1908 D2;122
9.2;Y8;131
9.3;1909 B;138
9.4;1909 C;147
9.5;Y43;170
9.6;Y 44;178
9.7;Y 45;183
9.8;1910 H;185
9.9;1911K;209
9.10;1909 E;214
9.11;NOTES;221
10;CHAPTER 3. Toward the plane translation theorem;222
10.1;1909F2;224
10.2;1909 H2;236
10.3;1911H2;250
10.4;1911J2;262
10.5;1910 F;273
10.6;1912 B;279
10.7;1919 M2;298
10.8;NOTES;299
11;CHAPTER 4. Vector fields on surfaces;300
11.1;1909G2;302
11.2;1910A2;312
11.3;1910D2;332
11.4;1915 B;348
11.5;NOTES;367
12;CHAPTER 5. Gantor—Schoenflies style topology;368
12.1;1910B2;370
12.2;1910C;381
12.3;Y10;400
12.4;1910 J;402
12.5;Y15;404
12.6;1910 E;406
12.7;1911B2;413
12.8;1913B2;425
12.9;1916A;434
12.10;Y 57;437
12.11;Y 58;439
12.12;1915 A2;441
12.13;1917B2;443
12.14;NOTES;446
13;CHAPTER 6. The new methods in topology;448
13.1;Y16;450
13.2;Y17;455
13.3;Y18;458
13.4;1911C;459
13.5;Y1;475
13.6;Y2;477
13.7;Y3;478
13.8;Y4;479
13.9;Y5;481
13.10;1911 D;483
13.11;1926 D2;504
13.12;1911E;506
13.13;1911F;518
13.14;1911 L;525
13.15;1911G;527
13.16;1931;536
13.17;1912 C;538
13.18;1912 E2;540
13.19;1912F;550
13.20;1912 L;552
13.21;1912 K2;556
13.22;1912 M;567
13.23;1913 A;569
13.24;1924J2;583
13.25;1928 C2;588
13.26;1912 H;597
13.27;1912D;606
13.28;Y 6;613
13.29;Y 20;614
13.30;1912 G;616
13.31;1918 C;620
13.32;1918D;624
13.33;924 K2;635
13.34;NOTE;637
14;CHAPTER 7. Topology of surfaces;638
14.1;1919 L2;640
14.2;Y 22;645
14.3;Y 23;647
14.4;1919 S;649
14.5;1919N2;652
14.6;1919 P2;655
14.7;1919 G;660
14.8;1920 A2;672
14.9;1920B2;676
14.10;1920E;681
14.11;1921 D;684
14.12;NOTES;690
15;CHAPTER 8. Mechanics;692
15.1;1918 E;694
15.2;Y 97;706
15.3;Y 98;713
15.4;NOTE;715
16;ABBREVIATIONS;716
17;LITERATURE;718




