Freitas | Data Mining and Knowledge Discovery with Evolutionary Algorithms | Buch | 978-3-642-07763-0 | sack.de

Buch, Englisch, 265 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 429 g

Reihe: Natural Computing Series

Freitas

Data Mining and Knowledge Discovery with Evolutionary Algorithms


1. Auflage. Softcover version of original hardcover Auflage 2002
ISBN: 978-3-642-07763-0
Verlag: Springer

Buch, Englisch, 265 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 429 g

Reihe: Natural Computing Series

ISBN: 978-3-642-07763-0
Verlag: Springer


This book addresses the integration of two areas of computer science, namely data mining and evolutionary algorithms. Both these areas have become increas­ ingly popular in the last few years, and their integration is currently an area of active research. In essence, data mining consists of extracting valid, comprehensible, and in­ teresting knowledge from data. Data mining is actually an interdisciplinary field, since there are many kinds of methods that can be used to extract knowledge from data. Arguably, data mining mainly uses methods from machine learning (a branch of artificial intelligence) and statistics (including statistical pattern recog­ nition). Our discussion of data mining and evolutionary algorithms is primarily based on machine learning concepts and principles. In particular, in this book we emphasize the importance of discovering comprehensible, interesting knowledge, which the user can potentially use to make intelligent decisions. In a nutshell, the motivation for applying evolutionary algorithms to data mining is that evolutionary algorithms are robust search methods which perform a global search in the space of candidate solutions (rules or another form of knowl­ edge representation). In contrast, most rule induction methods perform a local, greedy search in the space of candidate rules. Intuitively, the global search of evolutionary algorithms can discover interesting rules and patterns that would be missed by the greedy search.

Freitas Data Mining and Knowledge Discovery with Evolutionary Algorithms jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Preface; 1. Introduction; 2. Data Mining Tasks and Concepts; 3. Data Mining Paradigms; 4. Data Prepration; 5. Basic Concepts of Evolutionary Algorithms; 6. Genetic Algorithms for Rule Discovery; 7. Genetic Programming for Rule Discovery and Decision-Tree Building; 8. Evolutionary Algorithms for Clustering; 9. Evolutionary Algorithms for Data Preparation; 10. Evolutionary Algorithms for Discovering Fuzzy Rules; 11. Scaling up Evolutionary Algorithms for Large Data Sets; 12. Conclusions and Research Directions; Index.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.