E-Book, Englisch, 468 Seiten
Freeden / Gerhards Geomathematically Oriented Potential Theory
1. Auflage 2013
ISBN: 978-1-4398-9543-6
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
E-Book, Englisch, 468 Seiten
Reihe: Chapman & Hall/CRC Pure and Applied Mathematics
ISBN: 978-1-4398-9543-6
Verlag: Taylor & Francis
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
As the Earth`s surface deviates from its spherical shape by less than 0.4 percent of its radius and today’s satellite missions collect their gravitational and magnetic data on nearly spherical orbits, sphere-oriented mathematical methods and tools play important roles in studying the Earth’s gravitational and magnetic field.
Geomathematically Oriented Potential Theory presents the principles of space and surface potential theory involving Euclidean and spherical concepts. The authors offer new insight on how to mathematically handle gravitation and geomagnetism for the relevant observables and how to solve the resulting potential problems in a systematic, mathematically rigorous framework.
The book begins with notational material and the necessary mathematical background. The authors then build the foundation of potential theory in three-dimensional Euclidean space and its application to gravitation and geomagnetism. They also discuss surface potential theory on the unit sphere along with corresponding applications.
Focusing on the state of the art, this book breaks new geomathematical grounds in gravitation and geomagnetism. It explores modern sphere-oriented potential theoretic methods as well as classical space potential theory.
Zielgruppe
Graduate students and professionals in geomathematics, mathematics, physics, and geoscience.
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Angewandte Physik Geophysik
- Naturwissenschaften Physik Elektromagnetismus Magnetismus
- Naturwissenschaften Physik Quantenphysik Relativität, Gravitation
- Geowissenschaften Geologie Geophysik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
PRELIMINARIES
Three-Dimensional Euclidean Space R3
Basic Notation
Integral Theorems
Two-Dimensional Sphere O
Basic Notation
Integral Theorems
(Scalar) Spherical Harmonics
(Scalar) Circular Harmonics
Vector Spherical Harmonics
Tensor Spherical Harmonics
POTENTIAL THEORY IN THE EUCLIDEAN SPACE R3
Basic Concepts
Background Material
Volume Potentials
Surface Potentials
Boundary-Value Problems
Locally and Globally Uniform Approximation
Gravitation
Oblique Derivative Problem
Satellite Problems
Gravimetry Problem
Geomagnetism
Geomagnetic Background
Mie and Helmholtz Decomposition
Gauss Representation and Uniqueness
Separation of Sources
Ionospheric Current Systems
POTENTIAL THEORY ON THE UNIT SPHERE O
Basic Concepts
Background Material
Surface Potentials
Curve Potentials
Boundary-Value Problems
Differential Equations for Surface Gradient and Surface Curl Gradient
Locally and Globally Uniform Approximation
Gravitation
Disturbing Potential
Linear Regularization Method
Multiscale Solution
Geomagnetics
Mie and Helmholtz Decomposition
Higher-Order Regularization Methods
Separation of Sources
Ionospheric Current Systems
Bibliography
Index
Exercises appear at the end of each chapter.