Buch, Englisch, 293 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1330 g
Buch, Englisch, 293 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1330 g
Reihe: Studies in Computational Intelligence
ISBN: 978-3-642-04511-0
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Constructive Neural Network Algorithms for Feedforward Architectures Suitable for Classification Tasks.- Efficient Constructive Techniques for Training Switching Neural Networks.- Constructive Neural Network Algorithms That Solve Highly Non-separable Problems.- On Constructing Threshold Networks for Pattern Classification.- Self-Optimizing Neural Network 3.- M-CLANN: Multiclass Concept Lattice-Based Artificial Neural Network.- Constructive Morphological Neural Networks: Some Theoretical Aspects and Experimental Results in Classification.- A Feedforward Constructive Neural Network Algorithm for Multiclass Tasks Based on Linear Separability.- Analysis and Testing of the m-Class RDP Neural Network.- Active Learning Using a Constructive Neural Network Algorithm.- Incorporating Expert Advice into Reinforcement Learning Using Constructive Neural Networks.- A Constructive Neural Network for Evolving a Machine Controller in Real-Time.- Avoiding Prototype Proliferation in Incremental Vector Quantization of Large Heterogeneous Datasets.- Tuning Parameters in Fuzzy Growing Hierarchical Self-Organizing Networks.- Self-Organizing Neural Grove: Efficient Multiple Classifier System with Pruned Self-Generating Neural Trees.