Fox | Nonparametric Simple Regression | Buch | 978-0-7619-1585-0 | sack.de

Buch, Englisch, Band 130, 96 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 131 g

Reihe: Quantitative Applications in the Social Sciences

Fox

Nonparametric Simple Regression

Smoothing Scatterplots
1. Auflage 2000
ISBN: 978-0-7619-1585-0
Verlag: Sage Publications, Inc

Smoothing Scatterplots

Buch, Englisch, Band 130, 96 Seiten, Format (B × H): 140 mm x 216 mm, Gewicht: 131 g

Reihe: Quantitative Applications in the Social Sciences

ISBN: 978-0-7619-1585-0
Verlag: Sage Publications, Inc


While regression analysis traces the dependence of the distribution of a response variable to see if it bears a particular (linear) relationship to one or more of the predictors, nonparametric regression analysis makes minimal assumptions about the form of relationship between the average response and the predictors. This makes nonparametric regression a more useful technique for analyzing data in which there are several predictors that may combine additively to influence the response. (An example could be something like birth order/gender/and temperament on achievement motivation).

Unfortunately, researchers have not had accessible information on nonparametric regression analysis, until now. Beginning with presentation of nonparametric regression based on dividing the data into bins and averaging the response values in each bin, Fox introduces readers to the techniques of kernel estimation, additive nonparametric regression, and the ways nonparametric regression can be employed to select transformations of the data preceding a linear least-squares fit. The book concludes with ways nonparametric regression can be generalized to logit, probit, and Poisson regression.

Fox Nonparametric Simple Regression jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


What Is Nonparametric Regression?
Binning and Local Averaging
Kernel Estimation
Local Polynomial Regression
Splines
Nonparametric Regression and Data Analysis


Fox, John, Jr.
John Fox received a BA from the City College of New York and a PhD from the University of Michigan, both in Sociology. He is Professor Emeritus of Sociology at McMaster University in Hamilton, Ontario, Canada, where he was previously the Senator William McMaster Professor of Social Statistics. Prior to coming to McMaster, he was Professor of Sociology, Professor of Mathematics and Statistics, and Coordinator of the Statistical Consulting Service at York University in Toronto. Professor Fox is the author of many articles and books on applied statistics, including \emph{Applied Regression Analysis and Generalized Linear Models, Third Edition} (Sage, 2016). He is an elected member of the R Foundation, an associate editor of the Journal of Statistical Software, a prior editor of R News and its successor the R Journal, and a prior editor of the Sage Quantitative Applications in the Social Sciences monograph series.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.