E-Book, Englisch, 281 Seiten
Fournel / Javidi Information Optics and Photonics
1. Auflage 2010
ISBN: 978-1-4419-7380-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Algorithms, Systems, and Applications
E-Book, Englisch, 281 Seiten
ISBN: 978-1-4419-7380-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book will address the advances, applications, research results, and emerging areas of optics, photonics, computational approaches, nano-photonics, bio-photonics, with applications in information systems. The objectives are to bring together novel approaches, analysis, models, and technologies that enhance sensing, measurement, processing, interpretation, and visualization of information. The book will concentrate on new approaches to information systems, including integration of computational algorithms, bio-inspired models, photonics technologies, information security, bio-photonics, and nano-photonics. Applications include bio-photonics, digitally enhanced sensing and imaging systems, multi-dimensional optical imaging and image processing, bio-inspired imaging, 3D visualization, 3D displays, imaging on nano-scale, quantum optics, super resolution imaging, photonics for biological applications, microscopy, information optics, and holographic information systems.
Bahram Javidi is Board of Trustees Distinguished Professor at University of Connecticut which is the highest rank and honor bestowed on a faculty member based on research, teaching, and service. Dr. Javidi has been recognized by five best paper awards, and several major awards from international professional societies and foundations. He has been named Fellow of seven National and International professional scientific societies, including IEEE, AIMBE, OSA, SPIE, IoP, and IS&T. In 2008, he received the Fellow award of the John Simon Guggenheim Foundation. Prof. Javidi has over 630 publications. He has published 9 books, 44 book chapters, and over 250 technical articles in major peer reviewed journals. He has published over 330 conference proceedings, including over 110 Plenary Addresses, Keynote Addresses, and invited conference papers. His papers have been cited over 4500 times according to the ISI Web of Science citation index. Thierry Fournel is a Professor of Computer Science at the University of St. Etienne. He was the co-organizer of the 2009 Workshop on Information Optics.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;8
2;Contributors;12
3;Part I Optical Devices and Systems;18
3.1;Chapter 1 General Solution of Two-Dimensional Beam-Shaping with Two Surfaces;19
3.1.1;1.1 Introduction;19
3.1.2;1.2 Optical Beam Shaping with Two Surfaces;20
3.1.3;1.3 SBF-Approximation of Functions;23
3.1.4;1.4 Transport Equation for Mapping Intensity;23
3.1.5;1.5 Examples;24
3.1.6;1.6 Conclusion;26
3.1.7;References;27
3.2;Chapter 2 Nanophotonics for Information Systems;28
3.2.1;2.1 Introduction;28
3.2.2;2.2 Nanophotonics Process;31
3.2.3;2.3 Dielectric Metamaterials;33
3.2.3.1;2.3.1 Inhomogeneous Dielectric Metamaterials with Space-Variant Polarizability;34
3.2.3.2;2.3.2 Graded Index Structures;35
3.2.4;2.4 Photonic Nano-wires: Sub-Wavelength Inhomogeneous Dielectrics;37
3.2.4.1;2.4.1 Photonic Crystal-Based Resonant Device;38
3.2.4.2;2.4.2 Aperiodic Chirped Photonic Nano-Wires;40
3.2.4.3;2.4.3 Cladding-Modulated Photonic Nano-wires;43
3.2.5;2.5 Nanophotonic Devices and Circuits: Wavelength Selective Add Drop Filter with Vertical Gratings on a Silicon Chip;46
3.2.6;2.6 Discussions and Future Perspectives;49
3.2.7;References;50
3.3;Chapter 3 Liquid Crystal Light-Valves for Slow-Light and Applications;53
3.3.1;3.1 Introduction;53
3.3.2;3.2 Liquid Crystal Light-Valves as Nonlinear Optical Media;54
3.3.3;3.3 Two-Wave Mixing and Optical Amplification in LCLV;56
3.3.3.1;3.3.1 General Theoretical Description of the TWM in LCLV;57
3.3.4;3.4 Slow and Fast Light in LCLV: Tuning the Group Velocity of Light Pulses;59
3.3.4.1;3.4.1 Theoretical Background;60
3.3.4.2;3.4.2 Experimental Results;61
3.3.5;3.5 Interferometry with the LCLV as a Slow-Light Medium;63
3.3.5.1;3.5.1 High Sensitivity LCLV-Based Interferometer;63
3.3.5.2;3.5.2 Picometer Detection by Adaptive Holography in the LCLV;64
3.3.6;3.6 Conclusions;67
3.3.7;References;67
3.4;Chapter 4 Diversity of Optical Signal Processing Led by Optical Signal Form Conversion;69
3.4.1;4.1 Introduction;69
3.4.2;4.2 Optical Signal Form Conversion and Photonic Analog-to-Digital (A/D) Conversion;71
3.4.3;4.3 Diversity of Optical Signal Processing and 2-D Time--Space Conversion;72
3.4.4;4.4 Conclusion;74
3.4.5;References;75
3.5;Chapter 5 Dynamic Wavefront Sensing and Correctionwith Low-Cost Twisted Nematic Spatial Light Modulators;76
3.5.1;5.1 Introduction;76
3.5.2;5.2 Characterization of a Twisted Nematic Liquid Crystal Display;77
3.5.2.1;5.2.1 Equivalent Retarder--Rotator Approach;78
3.5.3;5.3 Optimization of the Phase Response of a Twisted Nematic Liquid Crystal Display;80
3.5.4;5.4 Use of a Twisted Nematic Liquid Crystal Display for an Efficient Compensation of Aberrations;82
3.5.4.1;5.4.1 Aberration Encoding Scheme;82
3.5.4.2;5.4.2 Experimental Results;83
3.5.5;5.5 Measurement and Compensation of Optical Aberrations Using a Single Spatial Light Modulator;84
3.5.5.1;5.5.1 Basic Layout of the Adaptive Setup;84
3.5.5.2;5.5.2 Experimental Results;85
3.5.5.3;5.5.3 Discussion of Experimental Results: Limitations and Advantages of Twisted Nematic Liquid Crystal Displays;87
3.5.6;References;87
3.6;Chapter 6 Nanoinjection Detectors and Imagers for Sensitive and Efficient Infrared Detection;90
3.6.1;6.1 Introduction;90
3.6.2;6.2 Nanoinjection Single Photon Imagers;91
3.6.3;6.3 Nanoinjection Single Photon Imagers;97
3.6.4;References;101
3.7;Chapter 7 Biological Applications of Stimulated Parametric Emission Microscopy and Stimulated Raman Scattering Microscopy;102
3.7.1;7.1 Introduction;102
3.7.2;7.2 Stimulated Parametric Emission Microscopy;103
3.7.3;7.3 SRS Microscopy;108
3.7.4;7.4 Conclusion;110
3.7.5;References;110
4;Part II 3D Passive/Active Imaging and Visualization;112
4.1;Chapter 8 Novel Approaches in 3D Sensing, Imaging, and Visualization;113
4.1.1;8.1 Introduction;113
4.1.2;8.2 Three-Dimensional Imaging with Axially Distributed Sensing;115
4.1.3;8.3 Profilometry and Optical Slicing;119
4.1.4;8.4 Occluded Target Tracking in 3D;122
4.1.5;8.5 Conclusions;125
4.1.6;References;125
4.2;Chapter 9 Overview of Free-viewpoint TV (FTV);127
4.2.1;9.1 Introduction;127
4.2.2;9.2 FTV System;128
4.2.2.1;9.2.1 Configuration of FTV System;128
4.2.2.2;9.2.2 Video Capture;128
4.2.2.3;9.2.3 Correction;130
4.2.2.4;9.2.4 MVC Encoding and Decoding;130
4.2.2.5;9.2.5 View Generation;130
4.2.2.6;9.2.6 2D/3D Display;131
4.2.3;9.3 Ray-Space Technology;133
4.2.3.1;9.3.1 Ray Capture;133
4.2.3.2;9.3.2 Ray Display;134
4.2.4;9.4 International Standardization;135
4.2.5;9.5 Conclusion;137
4.2.6;References;138
4.3;Chapter 10 Presentation and Perception of Digital Hologram Reconstructions of Real-World Objects on Conventional Stereoscopic Displays;141
4.3.1;10.1 Introduction;141
4.3.2;10.2 Preparation of Holograms for Displaying on Conventional Displays;142
4.3.2.1;10.2.1 How to Encode Different Perspectives in Numerical Hologram Reconstructions;142
4.3.2.2;10.2.2 Conventional Stereoscopic Displays;144
4.3.2.3;10.2.3 Conclusions;145
4.3.3;10.3 Perceived Quality in Stereoscopic Viewing of Digital Holograms of Real-World Objects;146
4.3.3.1;10.3.1 Introduction;146
4.3.3.2;10.3.2 Methods;146
4.3.3.2.1;10.3.2.1 Subjects and Apparatus;146
4.3.3.2.2;10.3.2.2 Stimuli;147
4.3.3.2.3;10.3.2.3 Procedure;147
4.3.3.3;10.3.3 Results;147
4.3.3.4;10.3.4 Conclusions;149
4.3.4;10.4 Extending the Depth of Focus of Holographic Reconstructions by Binocular Fusion;150
4.3.4.1;10.4.1 Introduction;150
4.3.4.2;10.4.2 Methods;150
4.3.4.3;10.4.3 Results and Conclusions;152
4.3.5;10.5 General Conclusions;153
4.3.6;References;154
4.4;Chapter 11 Parallel Phase-Shifting Digital Holography Based on the Fractional Talbot Effect;155
4.4.1;11.1 Introduction;155
4.4.2;11.2 Talbot Digital Holography Interferometry;157
4.4.3;11.3 Experimental Results;161
4.4.4;11.4 Conclusions;163
4.4.5;References;164
4.5;Chapter 12 Improvement of Viewing-Zone Angle and Image Quality of Digital Holograms;166
4.5.1;12.1 Introduction;166
4.5.2;12.2 Recording and Synthesis of Digital Holograms;167
4.5.3;12.3 Simulation;168
4.5.4;12.4 Experimental Results;169
4.5.5;12.5 Conclusion;171
4.5.6;References;172
4.6;Chapter 13 Shot Noise in Digital Holography;173
4.6.1;13.1 Introduction;173
4.6.2;13.2 Theoretical Noise;174
4.6.2.1;13.2.1 The Shot Noise on the CCD Pixel Signal;176
4.6.2.2;13.2.2 The Object Field Equivalent Noise for One Frame;176
4.6.2.3;13.2.3 The Object Field Equivalent Noise for M=4n Frames;178
4.6.3;13.3 Reaching the Shot Noise in Real Life Holographic Experiment;179
4.6.3.1;13.3.1 Experimental Validation with an USAF Target;181
4.6.4;13.4 Conclusion;184
4.6.5;References;184
4.7;Chapter 14 Deformation of Digital Holograms for Full Control of Focus and for Extending the Depth of Field;186
4.7.1;14.1 Introduction;186
4.7.2;14.2 Fresnel Holograms: Linear Deformation;187
4.7.3;14.3 Fourier Holograms: Quadratic Deformation;189
4.7.4;14.4 Conclusion;192
4.7.5;References;193
4.8;Chapter 15 Zoom Algorithms for Digital Holography;195
4.8.1;15.1 Introduction to Digital Holography;195
4.8.2;15.2 Digital Hologram Recording and Reconstructing;196
4.8.2.1;15.2.1 Digital Hologram Recording;196
4.8.2.2;15.2.2 Reconstruction of Digital Holograms;198
4.8.2.2.1;15.2.2.1 The Direct Method;198
4.8.2.2.2;15.2.2.2 The Spectral Method;199
4.8.3;15.3 Zooming Algorithm;203
4.8.3.1;15.3.1 Zooming Out;203
4.8.4;15.4 Adaptation of Algorithm to Permit Zooming In;205
4.8.5;15.5 Relationship of This Algorithm to Previous Work;206
4.8.5.1;15.5.1 The Rhodes Light Tube;206
4.8.5.2;15.5.2 The Double Direct Method;207
4.8.5.3;15.5.3 The Chirp Z Transform Method;208
4.8.5.4;15.5.4 The Correct Conditions of Use;209
4.8.5.5;15.5.5 Other Zoom Algorithms;209
4.8.6;15.6 Conclusion;210
4.8.7;References;211
5;Part III Polarimetric Imaging;213
5.1;Chapter 16 Partial Polarization of Optical Beams: Temporaland Spectral Descriptions;214
5.1.1;16.1 Introduction;214
5.1.2;16.2 Partial Coherence in Temporal and Spectral Domains;215
5.1.3;16.3 Partial Polarization of Electromagnetic Beams;216
5.1.3.1;16.3.1 Degree of Polarization in Time Domain;216
5.1.3.2;16.3.2 Mutual Coherence Matrix;217
5.1.3.3;16.3.3 Degree of Polarization in Frequency Domain;218
5.1.4;16.4 Examples;219
5.1.4.1;16.4.1 Quasi-monochromatic Beams;219
5.1.4.2;16.4.2 Beams with Arbitrary Uniform Coherence;219
5.1.4.3;16.4.3 Superposition of Uncorrelated Orthogonal Beams;221
5.1.4.4;16.4.4 Delayed Orthogonal Beams;221
5.1.5;16.5 Conclusions;222
5.1.6;References;223
5.2;Chapter 17 A Degree of Freedom and Metrics Approach for Nonsingular Mueller Matrices Characterizing Passive Systems;224
5.2.1;17.1 Introduction;224
5.2.2;17.2 Appropriate Norm and Dimension;226
5.2.2.1;17.2.1 Appropriate Norm;226
5.2.2.2;17.2.2 Appropriate dimension;226
5.2.3;17.3 Conclusion;230
5.2.4;References;231
5.3;Chapter 18 Resolution-Enhanced Imaging Based upon Spatial Depolarization of Light;232
5.3.1;18.1 Introduction;232
5.3.2;18.2 Theoretical Description;233
5.3.3;18.3 Experimental Validation;234
5.3.4;18.4 Conclusions;238
5.3.5;References;238
6;Part IV Algorithms for Imaging and Analysis;239
6.1;Chapter 19 Hybrid Imaging Systems for Depth of Focus Extension With or Without Postprocessing;240
6.1.1;19.1 Introduction;240
6.1.2;19.2 Uniformizing the Focal Line: The Holographically Generated Complex Mask;241
6.1.2.1;19.2.1 Binary-Phase Mask;241
6.1.2.2;19.2.2 Holographically Generated Complex Mask;243
6.1.3;19.3 DOF Extension with Hybrid Imaging System: Taking into Account the Deconvolution Step When Optimizing the Pupil Mask;245
6.1.3.1;19.3.1 Definition of an Image Quality Criterion;246
6.1.3.2;19.3.2 Example of Application to the Cubic Phase Mask;248
6.1.4;19.4 Conclusion;250
6.1.5;References;250
6.2;Chapter 20 Multispectral Image Pansharpening Based on the Contourlet Transform;252
6.2.1;20.1 Introduction;252
6.2.2;20.2 Contourlet Transform;254
6.2.3;20.3 Wavelet- and Contourlet-Based Pansharpening;255
6.2.3.1;20.3.1 Additive Wavelet/Contourlet;255
6.2.3.2;20.3.2 Substitutive Wavelet/Contourlet;256
6.2.3.3;20.3.3 IHS Wavelet/Contourlet;257
6.2.3.3.1;20.3.3.1 Additive IHS;257
6.2.3.3.2;20.3.3.2 Substitutive IHS;258
6.2.3.4;20.3.4 PCA Wavelet/Contourlet;258
6.2.3.5;20.3.5 WiSpeR/CiSpeR;259
6.2.4;20.4 Experimental Results;260
6.2.5;20.5 Conclusions;264
6.2.6;References;265
6.3;Chapter 21 Faces Robust Image Hashing by ICA: An Attempt to Optimality;267
6.3.1;21.1 Motivation;267
6.3.2;21.2 ICA in the Context of Robust Image Hashing;268
6.3.2.1;21.2.1 ICs Quantization and Binarization;271
6.3.2.2;21.2.2 Noise Reduction;272
6.3.3;21.3 Experimental Results;273
6.3.4;21.4 Conclusion;276
6.3.5;References;276
6.4;Chapter 22 Minkowski Metrics: Its Interaction and Complementarity with Euclidean Metrics;277
6.4.1;22.1 Introduction;277
6.4.2;22.2 The Space--Time Historical Minkowski Space;278
6.4.3;22.3 The Minkowski Space S2+;279
6.4.4;22.4 The Minkowski Space 2 of Plane Circles;282
6.4.5;22.5 Conclusion;285
6.4.6;References;285




