E-Book, Englisch, 683 Seiten, eBook
Reihe: Tutorials, Schools, and Workshops in the Mathematical Sciences
Foupouagnigni / Koepf Orthogonal Polynomials
1. Auflage 2020
ISBN: 978-3-030-36744-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
2nd AIMS-Volkswagen Stiftung Workshop, Douala, Cameroon, 5-12 October, 2018
E-Book, Englisch, 683 Seiten, eBook
Reihe: Tutorials, Schools, and Workshops in the Mathematical Sciences
ISBN: 978-3-030-36744-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
Part I: Introduction to Orthogonal Polynomials.- An Introduction to Orthogonal Polynomials.- Classical Continuous Orthogonal Polynomials.- Generating Functions and Hypergeometric Representations of Classical Continuous Orthogonal Polynomials.- Properties and Applications of the Zeros of Classical Continuous Orthogonal Polynomials.- Inversion, Multiplication and Connection Formulae of Classical Continuous Orthogonal Polynomials.- Classical Orthogonal Polynomials of a Discrete and a q -Discrete Variable.- Computer Algebra, Power Series and Summation.- On the Solutions of Holonomic Third-Order Linear Irreducible Differential Equations in Terms of Hypergeometric Functions.- The Gamma Function.- Part II: Recent Research Topics in Orthogonal Polynomials and Applications.- Hypergeometric Multivariate Orthogonal Polynomials.- Signal Processing, Orthogonal Polynomials, and Heun Equations.- Some Characterization Problems Related to Sheffer Polynomial Sets.- From Standard Orthogonal Polynomials to Sobolev Orthogonal Polynomials: The Role of Semiclassical Linear Functionals.- Two Variable Orthogonal Polynomials and Fejér-Riesz Factorization.- Exceptional Orthogonal Polynomials and Rational Solutions to Painlevé Equations.- ( R, p, q )-Rogers–Szegö and Hermite Polynomials, and Induced Deformed Quantum Algebras.- Zeros of Orthogonal Polynomials.- Properties of Certain Classes of Semiclassical Orthogonal Polynomials.- Orthogonal Polynomials and Computer Algebra.- Spin Chains, Graphs and State Revival.- An Introduction to Special Functions with Some Applications to Quantum Mechanics.- Orthogonal and Multiple Orthogonal Polynomials, Random Matrices, and Painlevé Equations.