Buch, Englisch, Band 481, 359 Seiten, Paperback, Format (B × H): 160 mm x 240 mm, Gewicht: 600 g
Volume II: Spatio-Temporal Fields
Buch, Englisch, Band 481, 359 Seiten, Paperback, Format (B × H): 160 mm x 240 mm, Gewicht: 600 g
Reihe: Mathematics and Its Applications
ISBN: 978-94-010-5974-9
Verlag: Springer Netherlands
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik EDV | Informatik Informatik Mathematik für Informatiker
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Kybernetik, Systemtheorie, Komplexe Systeme
- Technische Wissenschaften Technik Allgemein Konstruktionslehre und -technik
Weitere Infos & Material
1 Fields and means of describing them.- 1.1 Regular fields.- 1.2 Generalized fields.- 1.3 Spatio-temporal fields and frequency-wave fields.- 1.4 Stochastic discrete fields.- 1.5 Proofs of Lemmas and Theorems.- 1.6 Bibliographical Comments.- 2 Models of continuous fields and associated problems.- 2.1 Fields in electrodynamics.- 2.2 Acoustic fields.- 2.3 Parametric vibrations of distributed systems.- 2.4 Proofs of Lemmas and Theorems.- 2.5 Bibliographical Comments.- 3 Filtering of spatio-temporal fields.- 3.1 Linear filters and antenna arrays.- 3.2 Signal optimal detection.- 3.3 Estimation of angles of arrival of local signals.- 3.4 Proofs of Lemmas and Theorems.- 3.5 Bibliographical Comments.- 4 Optimal filtering of discrete homogeneous fields.- 4.1 Optimal filtering of discrete homogeneous fields.- 4.2 Synthesis of optimal physically realizable stationary filter.- 4.3 Optimal prediction of two-dimensional regressive fields.- 4.4 Multi-dimensional factorization and its attendant problems.- 4.5 Proofs of lemmas and theorems.- 4.6 Bibliographical Comments.- A Appendix: Fields in electrodynamics.- A.1 Self-conjugate Laplace operator.- A.1.1 Laplace operator in invariant subspace.- A.1.2 Invariant subspaces of Laplace operator.- A.1.3 Continuous spectrum of Laplace operator.- A.2 Electrodynamic problem in tube domain.- A.2.1 Eigenfields in tube domain.- A.2.2 Example: Oscillations in rectangular resonator.- A.2.3 Example: Rectangular semi-infinite waveguide.- A.3 Proofs of Lemmas and Theorems.- A.3.1 Proof of Lemma A.1.- A.3.2 Proof of Lemma A.2.- A.3.3 Proof of Lemma A.3.- A.3.4 Proof of Lemma A.4.- A.3.5 Proof of Lemma A.5.- A.3.6 Proof of Lemma A.6.- A.3.7 Proof of Theorem A. 1.- A.4 Bibliographical Comments.- B Appendix: Spectral analysis of time series.- B.1 Reconstruction of spectral densities.- B.1.1 Quasi-stationary signals and their power spectra.- B.1.2 Optimal estimation of power spectrum.- B.2 Padé approximation.- B.2.1 Padé approximation of analytic function.- B.2.2 Padé approximation of spectral density.- B.3 Identification of regressive equation.- B.3.1 Optimal prediction.- B.3.2 Estimation of coefficients of regressive equation.- B.4 Proofs of Lemmas and Theorems.- B.4.1 Proof of Lemma B.l.- B.4.2 Proof of Theorem B.l.- B.4.3 Proof of Theorem B.2.- B.4.4 Proof of Theorem B.3.- B.4.5 Proof of Lemma B.2.- B.4.6 Proof of Theorem B.4.- B.4.7 Proof of Lemma B.3.- B.4.8 Proof of Lemma B.4.- B.4.9 Proof of Lemma B.5.- B.4.10 Proof of Lemma B.6.- B.5 Bibliographical Comments.- C Appendix: Spectral analysis of discrete homogeneous fields.- C.1 Latticed cones and functions.- C.1.1 Latticed cones.- C.1.2 Latticed fields.- C.2 Discrete fields.- C.2.1 Generalized discrete fields.- C.2.2 Stochastic fields.- C.3 Latticed cone filters.- C.3.1 Stable linear filters.- C.3.2 Multi-variate analog of Padé approximation.- C.4 Proofs of Lemmas and Theorems.- C.4.1 Proof of Lemma C.l.- C.4.2 Proof of Theorem C.l.- C.4.3 Proof of Lemma C.2.- C.4.4 Proof of Theorem C.2.- C.5 Bibliographical Comments.- References.- Notation.