Buch, Englisch, Band 41, 320 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 664 g
Buch, Englisch, Band 41, 320 Seiten, HC runder Rücken kaschiert, Format (B × H): 160 mm x 241 mm, Gewicht: 664 g
Reihe: Computational Imaging and Vision
ISBN: 978-1-4471-2352-1
Verlag: Springer
Furthermore, it does not focus on specific applications, although some are detailed for the sake of illustration, but on the methodological frameworks on which such applications are built, making it an ideal companion for those seeking a rigorous methodological basis for specific algorithms as well as for those interested in the fundamental methodology per se.
Covering many topics at the forefront of current research, including anisotropic diffusion filtering of tensor fields, this book will be of particular interest to graduate and postgraduate students and researchers in the fields of computer vision, medical imaging and visual perception.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
Weitere Infos & Material
A Short Introduction to Diffusion-like Methods.- Adaptive Filtering using Channel Representations.- 3D-Coherence-Enhancing Diffusion Filtering for Matrix Fields.- Structural Adaptive Smoothing: Principles and Applications in Imaging.- SPD Tensors Regularization via Iwasawa Decomposition.- Sparse Representation of Video Data by Adaptive Tetrahedralizations.- Continuous Diffusion Wavelet Transforms and Scale Space over Euclidean Spaces and Noncommutative Lie Groups.- Left Invariant Evolution Equations on Gabor Transforms.- Scale Space Representations Locally Adapted to the Geometry of Base and Target Manifold.- An A Priori Model of Line Propagation.- Local Statistics on Shape Diffeomorphisms using a Depth Potential Function.- Preserving Time Structures while Denoising a Dynamical Image.- Interacting Adaptive Filters for Multiple Objects Detection.- Visual Data Recognition and Modeling based on Local Markovian Models.- Locally Specified Polygonal Markov Fields for Image Segmentation.- Regularization with Approximated L2 Maximum Entropy Method.