Fleig / Gustafsson / Kleinschmidt | Eisenstein Series and Automorphic Representations | Buch | 978-1-107-18992-8 | sack.de

Buch, Englisch, Band 176, 584 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 1091 g

Reihe: Cambridge Studies in Advanced Mathematics

Fleig / Gustafsson / Kleinschmidt

Eisenstein Series and Automorphic Representations


Erscheinungsjahr 2019
ISBN: 978-1-107-18992-8
Verlag: Cambridge University Press

Buch, Englisch, Band 176, 584 Seiten, Format (B × H): 157 mm x 235 mm, Gewicht: 1091 g

Reihe: Cambridge Studies in Advanced Mathematics

ISBN: 978-1-107-18992-8
Verlag: Cambridge University Press


This introduction to automorphic forms on adelic groups G(A) emphasises the role of representation theory. The exposition is driven by examples, and collects and extends many results scattered throughout the literature, in particular the Langlands constant term formula for Eisenstein series on G(A) as well as the Casselman–Shalika formula for the p-adic spherical Whittaker function. This book also covers more advanced topics such as spherical Hecke algebras and automorphic L-functions. Many of these mathematical results have natural interpretations in string theory, and so some basic concepts of string theory are introduced with an emphasis on connections with automorphic forms. Throughout the book special attention is paid to small automorphic representations, which are of particular importance in string theory but are also of independent mathematical interest. Numerous open questions and conjectures, partially motivated by physics, are included to prompt the reader's own research.

Fleig / Gustafsson / Kleinschmidt Eisenstein Series and Automorphic Representations jetzt bestellen!

Weitere Infos & Material


1. Motivation and background; Part I. Automorphic Representations: 2. Preliminaries on p-adic and adelic technology; 3. Basic notions from Lie algebras and Lie groups; 4. Automorphic forms; 5. Automorphic representations and Eisenstein series; 6. Whittaker functions and Fourier coefficients; 7. Fourier coefficients of Eisenstein series on SL(2, A); 8. Langlands constant term formula; 9. Whittaker coefficients of Eisenstein series; 10. Analysing Eisenstein series and small representations; 11. Hecke theory and automorphic L-functions; 12. Theta correspondences; Part II. Applications in String Theory: 13. Elements of string theory; 14. Automorphic scattering amplitudes; 15. Further occurrences of automorphic forms in string theory; Part III. Advanced Topics: 16. Connections to the Langlands program; 17. Whittaker functions, crystals and multiple Dirichlet series; 18. Automorphic forms on non-split real forms; 19. Extension to Kac–Moody groups; Appendix A. SL(2, R) Eisenstein series and Poisson resummation; Appendix B. Laplace operators on G/K and automorphic forms; Appendix C. Structure theory of su(2, 1); Appendix D. Poincaré series and Kloosterman sums; References; Index.


Kleinschmidt, Axel
Axel Kleinschmidt is a Senior Scientist at the Max-Planck-Institut für Gravitationsphysik, Germany (Albert Einstein Institute) and at the International Solvay Institutes, Brussels.

Gustafsson, Henrik P. A.
Henrik P. A. Gustafsson is a Postdoctoral Researcher in the Department of Mathematics at Stanford University, California.

Persson, Daniel
Daniel Persson is an Associate Professor in the Department of Mathematical Sciences at Chalmers University of Technology, Gothenburg.

Fleig, Philipp
Philipp Fleig is a Postdoctoral Researcher at the Max-Planck-Institut für Dynamik und Selbstorganisation, Germany.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.