Figotin / Pastur | Spectra of Random and Almost-Periodic Operators | Buch | 978-3-642-74348-1 | sack.de

Buch, Englisch, Band 297, 587 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 896 g

Reihe: Grundlehren der mathematischen Wissenschaften

Figotin / Pastur

Spectra of Random and Almost-Periodic Operators


1992
ISBN: 978-3-642-74348-1
Verlag: Springer

Buch, Englisch, Band 297, 587 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 896 g

Reihe: Grundlehren der mathematischen Wissenschaften

ISBN: 978-3-642-74348-1
Verlag: Springer


In the last fifteen years the spectral properties of the Schrodinger equation and of other differential and finite-difference operators with random and almost-periodic coefficients have attracted considerable and ever increasing interest. This is so not only because of the subject's position at the in­ tersection of operator spectral theory, probability theory and mathematical physics, but also because of its importance to theoretical physics, and par­ ticularly to the theory of disordered condensed systems. It was the requirements of this theory that motivated the initial study of differential operators with random coefficients in the fifties and sixties, by the physicists Anderson, 1. Lifshitz and Mott; and today the same theory still exerts a strong influence on the discipline into which this study has evolved, and which will occupy us here. The theory of disordered condensed systems tries to describe, in the so-called one-particle approximation, the properties of condensed media whose atomic structure exhibits no long-range order. Examples of such media are crystals with chaotically distributed impurities, amorphous substances, biopolymers, and so on. It is natural to describe the location of atoms and other characteristics of such media probabilistically, in such a way that the characteristics of a region do not depend on the region's position, and the characteristics of regions far apart are correlated only very weakly. An appropriate model for such a medium is a homogeneous and ergodic, that is, metrically transitive, random field.

Figotin / Pastur Spectra of Random and Almost-Periodic Operators jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


I. Metrically Transitive Operators.- 1 Basic Definitions and Examples.- 2 Simple Spectral Properties of Metrically Transitive Operators.- Problems.- II. Asymptotic Properties of Metrically Transitive Matrix and Differential Operators.- 3 Review of Basic Results.- 4 Matrix Operators on ?2 (Zd).- 5 Schrödinger Operators and Elliptic Differential Operators on L2(Rd).- Problems.- III. Integrated Density of States in One-Dimensional Problems of Second Order.- 6 The Oscillation Theorem and the Integrated Density of States.- 7 Examples of Calculation of the Integrated Density of States.- Problems.- IV. Asymptotic Behavior of the Integrated Density of States at Spectral Boundaries in Multidimensional Problems.- 8 Stable Boundaries.- 9 Fluctuation Boundaries: General Discussion and Classical Asymptotics.- 10 Fluctuation Boundaries: Quantum Asymptotics.- Problems.- V. Lyapunov Exponents and the Spectrum in One Dimension.- 11 Existence and Properties of Lyapunov Exponents.- 12 Lyapunov Exponents and the Absolutely Continuous Spectrum.- 13 Lyapunov Exponents and the Point Spectrum.- Problems.- VI. Random Operators.- 14 The Lyapunov Exponent of Random Operators in One Dimension.- 15 The Point Spectrum of Random Operators.- Problems.- VII. Almost-Periodic Operators.- 16 Smooth Quasi-Periodic Potentials.- 17 Limit-Periodic Potentials.- 18 Unbounded Quasiperiodic Potentials.- Problems.- Appendix A: Nevanlinna Functions.- Appendix B: Distribution of Eigenvalues of Large Random Matrices.- List of Symbols.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.