Fiedler - Le Touze / Fiedler - Le Touzé | Pencils of Cubics and Algebraic Curves in the Real Projective Plane | Buch | 978-1-138-32257-8 | sack.de

Buch, Englisch, 256 Seiten, Format (B × H): 243 mm x 159 mm, Gewicht: 484 g

Fiedler - Le Touze / Fiedler - Le Touzé

Pencils of Cubics and Algebraic Curves in the Real Projective Plane


1. Auflage 2018
ISBN: 978-1-138-32257-8
Verlag: Taylor & Francis Ltd

Buch, Englisch, 256 Seiten, Format (B × H): 243 mm x 159 mm, Gewicht: 484 g

ISBN: 978-1-138-32257-8
Verlag: Taylor & Francis Ltd


Pencils of Cubics and Algebraic Curves in the Real Projective Plane thoroughly examines the combinatorial configurations of n generic points in RP². Especially how it is the data describing the mutual position of each point with respect to lines and conics passing through others.

The first section in this book answers questions such as, can one count the combinatorial configurations up to the action of the symmetric group? How are they pairwise connected via almost generic configurations? These questions are addressed using rational cubics and pencils of cubics for n = 6 and 7. The book’s second section deals with configurations of eight points in the convex position. Both the combinatorial configurations and combinatorial pencils are classified up to the action of the dihedral group D8. Finally, the third section contains plentiful applications and results around Hilbert’s sixteenth problem.

The author meticulously wrote this book based upon years of research devoted to the topic. The book is particularly useful for researchers and graduate students interested in topology, algebraic geometry and combinatorics.

Features:

- Examines how the shape of pencils depends on the corresponding configurations of points

- Includes topology of real algebraic curves

- Contains numerous applications and results around Hilbert’s sixteenth problem

About the Author:

Séverine Fiedler-le Touzé has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.

Fiedler - Le Touze / Fiedler - Le Touzé Pencils of Cubics and Algebraic Curves in the Real Projective Plane jetzt bestellen!

Weitere Infos & Material


I Rational pencils of cubics and configurations of six or seven points in RP 2

1 Points, lines and conics in the plane

2 Configurations of six points

3 Configurations of seven points

II Pencils of cubics with eight base points lying in convex position in RP 2

4 Pencils of cubics

5 Lists of conics

6 Link between lists and pencils

7 Pencils with reducible cubics

8 Classification of the pencils of cubics

9 Tabulars

10 Application to an interpolation problem

III Algebraic curves

11 Hilbert’s 16th problem

12 M -curves of degree 9

13 M -curves of degree 9 with deep nests

14 M -curves of degree 9 with four or three nests

15 M -curves of degree 9 or 11 with one non-empty oval

16 Curves of degree 11 with many nests

17 Totally real pencils of curves


Séverine Fiedler-le Touzé has published several papers on this topic and has been invited to present at many conferences. She holds a Ph.D. from University Rennes1 and was a post-doc at the Mathematical Sciences Research Institute in Berkeley, California.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.