E-Book, Englisch, Band 221, 606 Seiten, eBook
Fesenko / Yatsenko Nanocomposites, Nanostructures, and Their Applications
1. Auflage 2019
ISBN: 978-3-030-17759-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Selected Proceedings of the 6th International Conference Nanotechnology and Nanomaterials (NANO2018), August 27-30, 2018, Kyiv, Ukraine
E-Book, Englisch, Band 221, 606 Seiten, eBook
Reihe: Springer Proceedings in Physics
ISBN: 978-3-030-17759-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book highlights some of the latest advances in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 6th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2018) in Kiev, Ukraine on August 27-30, 2018 organized by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on material properties, behavior, and synthesis. This book's companion volume also addresses topics such as nanooptics, energy storage, and biomedical applications.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;Contributors;13
4;Part I Nanocomposites and Nanostructures;22
4.1;1 A Microscopic Description of Spin Dynamics in Magnetic Multilayer Nanostructures;23
4.1.1;1.1 Introduction;23
4.1.2;1.2 Spin-Dependent Interface Scattering-Induced Torques in Magnetic Multilayer Nanostructures;25
4.1.2.1;1.2.1 Features of Spin-Features of Spin Transfer Effect;25
4.1.2.2;1.2.2 Passing the Electric Current Through the F/N Contact;28
4.1.2.3;1.2.3 Averaging Over the Normal Metal Layer;31
4.1.2.3.1;1.2.3.1 The Torque for Disordered Normal Metal Layers;31
4.1.2.3.2;1.2.3.2 The Torque for Ballistic Normal Metal Layers;34
4.1.2.4;1.2.4 Current-Driven Magnetic Switching;36
4.1.3;1.3 Out-of-Equilibrium Spin Dynamics in F/N-Based Structures;37
4.1.3.1;1.3.1 Features of Spin Dynamics;37
4.1.3.2;1.3.2 The Model of the Out-of-Equilibrium Spin Dynamics;38
4.1.3.3;1.3.3 Heat Pulse-Induced Spin Dynamics;41
4.1.4;1.4 Conclusions;44
4.1.5;References;45
4.2;2 Development of the Nano-mineral Phases at the Steel-Bentonite Interface in Time of the Evolution of Geological Repository for Radioactive Waste;48
4.2.1;2.1 Introduction;48
4.2.2;2.2 Characterization of Primary Nanoscale Structures of Corrosive Origin;49
4.2.2.1;2.2.1 Fe(II)-Fe(III) Layered Double Hydroxide (LDH) Structures, the Mechanism of Their Formation and Their Phase Transformations;50
4.2.2.1.1;2.2.1.1 “Green Rust-Ferrihydrite” System (Green Rust-Fh);51
4.2.2.1.2;2.2.1.2 “Green Rust-Goethite” System;51
4.2.2.1.3;2.2.1.3 “Green Rust-Akaganeite” System;51
4.2.2.1.4;2.2.1.4 “Green Rust-Lepidocrocite” System;51
4.2.2.1.5;2.2.1.5 “Green Rust-Feroxyhyte” System;52
4.2.2.1.6;2.2.1.6 “Green Rust-Magnetite” System;52
4.2.2.2;2.2.2 Phase Transformation of Ferrihydrite;52
4.2.3;2.3 The Study of Corrosion Processes on the Surface of Steel Containers;53
4.2.4;2.4 The Phase Transformation of Bentonite Clays at the Steel-Bentonite Interface Under Conditions of Geological Repository;56
4.2.5;2.5 Conclusion;61
4.2.6;References;62
4.3;3 Development of a Controlled in Situ Process for the Formation of Porous Anodic Alumina and Al Nanomesh From Thin Aluminum Films;64
4.3.1;3.1 Introduction;64
4.3.2;3.2 Experiment;68
4.3.3;3.3 Results and Discussion;69
4.3.4;3.4 Conclusions;74
4.3.5;References;74
4.4;4 Electrooxidation of Ethanol on Nickel-Copper Multilayer Metal Hydroxide Electrode;78
4.4.1;4.1 Introduction;78
4.4.2;4.2 Experimental;79
4.4.3;4.3 Experimenal Results and Discussion;79
4.4.4;4.4 Conclusions;85
4.4.5;References;85
4.5;5 Metal Surface Engineering Based on Formation of Nanoscaled Phase Protective Layers;88
4.5.1;5.1 Introduction;88
4.5.2;5.2 Materials and Experimental Methods;89
4.5.3;5.3 Results and Discussion;90
4.5.4;5.4 Conclusions;102
4.5.5;References;102
4.6;6 Electrical Conductivity and 7Li NMR Spin-Lattice Relaxation in Amorphous, Nano- and Microcrystalline Li2O-7GeO2;104
4.6.1;6.1 Introduction;104
4.6.2;6.2 Experimental Details;105
4.6.3;6.3 Results and Discussion;106
4.6.3.1;6.3.1 Structure and Morphology of the States Resulting from Glass Devitrification;106
4.6.3.2;6.3.2 Electrical Conductivity;108
4.6.3.3;6.3.3 Complex Impedance Spectra;110
4.6.3.4;6.3.4 NMR Spin-Lattice Relaxation of 7Li Isotope Nuclei;112
4.6.4;6.4 Conclusions;113
4.6.5;References;114
4.7;7 Influence of Surface Ultrafine Grain Structure on Cavitation Erosion Damage Resistance;116
4.7.1;7.1 Introduction;116
4.7.2;7.2 Materials and Methods;117
4.7.3;7.3 Results and Discussion;120
4.7.4;7.4 Conclusions;125
4.7.5;References;125
4.8;8 The Effect of Mechanochemical and Ultrasonic Treatments on the Properties of Composition CeO2 –MoO3 == 1:1;127
4.8.1;8.1 Introduction;127
4.8.2;8.2 Experimental;128
4.8.3;8.3 Results and Discussion;130
4.8.4;8.4 Conclusion;139
4.8.5;References;139
4.9;9 Behavior of Tempered Surface Nanocrystalline Structures Obtained by Mechanical-Pulse Treatment;142
4.9.1;9.1 Introduction;142
4.9.2;9.2 Materials and Experimental Methods;143
4.9.3;9.3 Results and Discussion;144
4.9.4;9.4 Conclusions;150
4.9.5;References;150
4.10;10 Nano-sized Adsorbate Island Formation in Adsorptive Anisotropic Multilayer Systems;152
4.10.1;10.1 Introduction;152
4.10.2;10.2 Model;154
4.10.3;10.3 Stability Analysis;157
4.10.4;10.4 Numerical Simulations;159
4.10.4.1;10.4.1 Isotropic Transference Between Layers;159
4.10.4.2;10.4.2 Pressure-Induced Anisotropic Transference;162
4.10.4.3;10.4.3 Anisotropic Plasma-Condensate Systems;164
4.10.4.4;10.4.4 Estimations;166
4.10.5;10.5 Conclusions;167
4.10.6;References;168
4.11;11 The Effect of Ultrasonic Treatment on the Physical–Chemical Properties of the ZnO/MoO3 System;170
4.11.1;11.1 Introduction;170
4.11.2;11.2 Experimental;171
4.11.2.1;11.2.1 Materials;171
4.11.2.2;11.2.2 Techniques;171
4.11.3;11.3 Results and Discussion;172
4.11.4;11.4 Conclusion;181
4.11.5;References;181
4.12;12 Hybrid Nanocomposites Synthesized into Stimuli Responsible Polymer Matrices: Synthesis and Application Prospects;184
4.12.1;12.1 Introduction;184
4.12.2;12.2 Materials and Methods;186
4.12.2.1;12.2.1 Synthesis of Dextran-Graft-Poly(N-Isopropylacrylamide) Copolymers;186
4.12.2.2;12.2.2 Au NP Synthesis into Polymer Template;186
4.12.2.3;12.2.3 Size-Exclusion Chromatography;187
4.12.2.4;12.2.4 Transmission Electron Microscopy;187
4.12.2.5;12.2.5 Dynamic Light Scattering;187
4.12.2.6;12.2.6 UV-Visible Spectroscopy;188
4.12.2.7;12.2.7 Biological Study of D-PNIPAM/Dox Nanocomposite;188
4.12.2.8;12.2.8 Cell Culture;188
4.12.2.9;12.2.9 MTT Assay;188
4.12.2.10;12.2.10 Statistics;189
4.12.2.11;12.2.11 The Evaluation of Dark Cytotoxicity;189
4.12.2.12;12.2.12 Photodynamic Therapy;189
4.12.3;12.3 Results and Discussion;190
4.12.3.1;12.3.1 Hybrid Nanosystem D70-PNIPAAm 15/Au NPs;193
4.12.3.2;12.3.2 Hybrid Nanosystem and Prospects of Their Application for Anticancer Therapy;196
4.12.4;12.4 Conclusions;201
4.12.5;References;201
4.13;13 Preparation and Complex Study of Thick Films Based on Nanostructured Cu0.1Ni0.8Co0.2Mn1.9O4 and Cu0.8Ni0.1Co0.2Mn1.9O4 Ceramics;203
4.13.1;13.1 Introduction;203
4.13.2;13.2 Sample Preparation;204
4.13.3;13.3 Results and Discussion;205
4.13.3.1;13.3.1 Structural Properties of Ceramics and Thick Films;205
4.13.3.2;13.3.2 Electrical Properties of Thick Films;208
4.13.3.3;13.3.3 Ageing Process in Thick Films;209
4.13.4;13.4 Conclusions;211
4.13.5;References;211
4.14;14 Nanoscale Investigation of Porous Structure in Adsorption-Desorption Cycles in the MgO-Al2O3 Ceramics;214
4.14.1;14.1 Introduction;214
4.14.2;14.2 Experimental Details;215
4.14.3;14.3 Results and Discussion;218
4.14.4;14.4 Conclusions;221
4.14.5;References;222
4.15;15 Structure, Morphology, and Spectroscopy Studies of La1?xRExVO4 Nanoparticles Synthesized by Various Methods;225
4.15.1;Abbreviations;225
4.15.2;15.1 Applications of Vanadate Matrices as Efficient Hosts for Luminescent RE3+ Ions;225
4.15.3;15.2 Feature of Lanthanum Vanadate Crystal Matrix Compared to Other Rare-Earth Vanadates;229
4.15.4;15.3 Methods of the Orthovanadate Nanoparticles Synthesis;230
4.15.4.1;15.3.1 Solid-State Method;231
4.15.4.2;15.3.2 Coprecipitation Method;231
4.15.4.3;15.3.3 Sol-Gel Synthesis;231
4.15.5;15.4 Phase Composition of the Synthesized Nanoparticles;233
4.15.6;15.5 Chemical Elements Analysis of the Ca-Doped Vanadate Nanoparticles;235
4.15.7;15.6 Morphology of the Vanadate Nanoparticles Synthesized by Different Methods;236
4.15.8;15.7 Infrared Spectroscopy;238
4.15.9;15.8 Reflectance Spectroscopy;241
4.15.10;15.9 Luminescent Spectroscopy;242
4.15.10.1;15.9.1 Dependencies of Luminescence Properties of the La1?xEuxVO4 Nanoparticles on Methods of Synthesis;242
4.15.10.2;15.9.2 Influence of Ca-Doping on Luminescence Properties of the Sol-Gel La1?xEuxVO4 Nanoparticles;247
4.15.11;15.10 Conclusions;251
4.15.12;References;251
4.16;16 Investigation of the Conditions of Synthesis of Alumo-NickelSpinel;256
4.16.1;16.1 Introduction;256
4.16.2;16.2 Methodology of the Experiment;257
4.16.3;16.3 Results and Discussion;258
4.16.4;16.4 Conclusion;262
4.16.5;References;262
4.17;17 IV–VIB Group Metal Boride and Carbide Nanopowder Corrosion Resistance in Nickeling Electrolytes;264
4.17.1;17.1 Introduction;264
4.17.2;17.2 Materials and Methods;265
4.17.3;17.3 Results and Discussion;266
4.17.4;17.4 Conclusions;269
4.17.5;References;269
4.18;18 Hydrodynamic and Thermodynamic Conditions for Obtaining a Nanoporous Structure of Ammonium Nitrate Granules in Vortex Granulators;270
4.18.1;18.1 Introduction;270
4.18.2;18.2 Hydrodynamic Conditions for Obtaining a Nanoporous Structure;272
4.18.3;18.3 Thermodynamic Conditions for Obtaining a Nanoporous Structure;276
4.18.4;18.4 An Influence of the Moisture Intensity on the PAN Granules' Structure;278
4.18.5;18.5 Conclusions;279
4.18.6;References;280
4.19;19 Nanostructured Mixed Oxide Coatings on Silumin Incorporated by Cobalt;282
4.19.1;19.1 Experimental;284
4.19.1.1;19.1.1 Effect of Electrolyte Composition;285
4.19.1.2;19.1.2 Effect of Oxidizing Regime;290
4.19.1.3;19.1.3 Effect of Plasma-Electrolytic Oxidizing Time;293
4.19.1.4;19.1.4 Topography and Phase Composition of PEO Cobalt-Containing Coatings;298
4.19.1.5;19.1.5 Corrosion Behavior of Cobalt-Containing Coatings on Silumin;300
4.19.1.6;19.1.6 Catalytic Activity of Al2O3 =· CoOx Coatings;301
4.19.2;19.2 Conclusions;302
4.19.3;References;302
4.20;20 Effect of Carbon Nanofillers on Processes of Structural Relaxation in the Polymer Matrixes;305
4.20.1;20.1 Introduction;305
4.20.2;20.2 Methods;306
4.20.3;20.3 Results and Discussion;307
4.20.4;20.4 Conclusions;315
4.20.5;References;316
4.21;21 Simulation of Tunneling Conductivity and Controlled Percolation In 3D Nanotube-Insulator Composite System;318
4.21.1;21.1 Introduction;318
4.21.2;21.2 Nanocomposite Conductivity Simulation Method;319
4.21.2.1;21.2.1 Model of Nanotube Dielectric Composite;319
4.21.2.2;21.2.2 Simulation Model;320
4.21.2.3;21.2.3 Resistor Network Formation;321
4.21.2.4;21.2.4 CNT and Contact Conductivities;323
4.21.3;21.3 Simulation of Tunneling Conductivity;324
4.21.4;21.4 Model and Methods for Implementing the Algorithm;325
4.21.5;21.5 Simulation of Field-Controlled Percolation in 3D System;327
4.21.6;21.6 Conclusions;330
4.21.7;References;331
4.22;22 Radiation-Stimulated Formation of Polyene Structures in Polyethylene Nanocomposites with Multi-walled Carbon Nanotubes;334
4.22.1;22.1 Introduction;334
4.22.2;22.2 Experimental Studies;335
4.22.3;22.3 Results and Discussion;335
4.22.4;22.4 Conclusion;342
4.22.5;References;343
4.23;23 Theoretical Analysis of Metal Salt Crystallization Process on the Thermoexfoliated and Disperse Graphite Surface;344
4.23.1;23.1 Introduction;344
4.23.2;23.2 The Kinetics of Impregnation of the Thermoexfoliated Graphite by Water-Salt Solutions;345
4.23.3;23.3 The Factors Determining Kinetics of the Pores Filling by Salt Solution;348
4.23.4;23.4 Crystallization of Metal Salt on the Surface of Different Types of Graphite;353
4.23.5;23.5 Conclusion;358
4.23.6;References;359
4.24;24 Modeling of Dielectric Permittivity of Polymer Composites with Mixed Fillers;360
4.24.1;24.1 Introduction;360
4.24.2;24.2 Maxwell-Garnett Model for Dielectric Permittivity of Polymer Composites Filled with Mixed Fillers;361
4.24.3;24.3 Results and Discussion;363
4.24.3.1;24.3.1 1D Conductive Nanofiller in Polymer Matrix Before Percolation Threshold;364
4.24.3.2;24.3.2 2D Carbon Nanofiller in Polymer Matrix Before Percolation Threshold;366
4.24.3.3;24.3.3 1D/2D Mixed Carbon Nanofiller in Polymer Matrix Before Percolation Threshold;368
4.24.3.4;24.3.4 2D Nanocarbon/Dielectric Particle Mixed Filler in Polymer Matrix Before Percolation Threshold;370
4.24.4;24.4 Conclusion;373
4.24.5;References;374
4.25;25 Nanostructural Effects in Iron Oxide Silicate Materials of the Earth's Crust;377
4.25.1;25.1 Introduction;377
4.25.2;25.2 Materials and Methods;378
4.25.3;25.3 Experiment and Discussion;378
4.25.3.1;25.3.1 Analysis of Nanostructure Phenomena in the Earth's Surface IASSMs Occurred with Geomechanical, Nanochemical, and Biocolloid Processes;378
4.25.3.1.1;25.3.1.1 Geochemical and Nanochemical Processes;378
4.25.3.1.2;25.3.1.2 Biocolloid Processes;383
4.25.3.2;25.3.2 Analysis of Nanostructural Phenomena in IASSMs, Related to Rheological Processes;390
4.25.4;25.4 Conclusions;394
4.25.5;References;394
4.26;26 Two-Dimensional Ordered Crystal Structure Formed by Chain Molecules in the Pores of Solid Matrix;397
4.26.1;26.1 Introduction;397
4.26.2;26.2 Experiment;398
4.26.2.1;26.2.1 Studied objects;398
4.26.3;26.3 Discussion;399
4.26.4;26.4 Pore Model;400
4.26.5;26.5 The Influence of the Curvature of the Pore's Surface on the Location of the Chain;401
4.26.6;26.6 The Mechanism of Formation of a Two-Dimensional Crystal Structure;403
4.26.7;26.7 180onclusions;405
4.26.8;References;405
4.27;27 Joint Electroreduction of Carbonate and Tungstate Ions as the Base for Tungsten Carbide Nanopowders Synthesis in Ionic Melts;406
4.27.1;27.1 Introduction;406
4.27.2;27.2 Simultaneous Electroreduction of the Carbonate and Tungstate Ions in Chloride-Fluoride and Oxide Melts;407
4.27.3;27.3 High-Temperature Electrochemical Synthesis of Tungsten Carbides;409
4.27.3.1;27.3.1 Electrochemical Synthesis of Fine Tungsten Carbide Nanopowders from Oxide Melts;409
4.27.3.2;27.3.2 Electrodeposition of Tungsten Carbide Coatings from Tungstate-Halide Melts;409
4.27.4;27.4 Conclusions;410
4.27.5;References;410
4.28;28 The Kinetics Peculiarities and the Electrolysis Regime Effect on the Morphology and Phase Composition of Fe-Co-W(Mo) Coatings;412
4.28.1;28.1 Introduction;412
4.28.2;28.2 Experimental;414
4.28.3;28.3 Theoretical Aspects;416
4.28.4;28.4 Electrochemical Behavior of Fe3+–Co2+–WO42?–Cit3? and Fe3+–Co2+–175209O42?–Cit3? Systems;418
4.28.5;28.5 Composition and Morphology of Fe-180209-W(Mo) Coatings;425
4.28.6;28.6 Phase Composition of the Fe-Co-W(Mo) Coatings;427
4.28.7;28.7 Conclusions;430
4.28.8;References;430
4.29;29 Dispersing of Molybdenum Nanofilms at Non-metallic Materials as a Result of Their Annealing in Vacuum;433
4.29.1;29.1 Introduction;433
4.29.2;29.2 Materials and Experimental Methods;434
4.29.3;29.3 Results and Discussion;435
4.29.4;29.4 Conclusions;443
4.29.5;References;444
5;Part II Applications;446
5.1;30 Effective Hamiltonians for Magnetic Ordering Within Periodic Anderson-Hubbard Model for Quantum Dot Array;447
5.1.1;30.1 Model of an Anderson-Hubbard Material;447
5.1.2;30.2 Configurational Model of Narrowband Material with Anderson Centers;451
5.1.3;30.3 The Hamiltonian of Strongly Correlated Electron System of Anderson-Hubbard Type;453
5.1.4;30.4 Narrowband Ferromagnet Case;458
5.1.5;30.5 Polar s-d-Model Case;460
5.1.6;30.6 Narrowband Antiferromagnet Case;462
5.1.7;30.7 Conclusions;463
5.1.8;References;464
5.2;31 PET Ion-Track Membranes: Formation Features and Basic Applications;466
5.2.1;31.1 Introduction;466
5.2.2;31.2 Methods;467
5.2.3;31.3 Formation Features of PET Ion-Track Membranes with Different Pore Parameters;468
5.2.3.1;31.3.1 Influence of Irradiation Fluence on the Parameters of PET Ion-Track Membranes;470
5.2.3.2;31.3.2 Effect of Etching Modes on the Parameters of PET Ion-Track Membranes with Cylindrical Pores;471
5.2.3.3;31.3.3 Effect of Etching Modes on the Parameters of PET Ion-Track Membranes with Conical Pores;474
5.2.4;31.4 Basic Applications of PET Ion-Track Membranes;476
5.2.4.1;31.4.1 Water Purification;476
5.2.4.2;31.4.2 Direct and Reverse Osmosis;477
5.2.4.3;31.4.3 Template Synthesis of Magnetic Nanostructures;479
5.2.5;31.5 Conclusion;482
5.2.6;References;483
5.3;32 Impact of Carbon Nanotubes on HDL-Like Structures: Computer Simulations;485
5.3.1;32.1 Introduction;485
5.3.2;32.2 Materials and Methods;486
5.3.3;32.3 Results;486
5.3.4;32.4 Conclusions;490
5.3.5;References;490
5.4;33 Approximation of a Simple Rectangular Lattice for a Conduction Electron in Graphene;492
5.4.1;33.1 Introduction;492
5.4.2;33.2 Preliminary Remarks;493
5.4.3;33.3 Approximation of a Simple Rectangular Lattice in the Dispersion Law (the Quasiparticle Hamiltonian) for a Graphene Conduction Electron;495
5.4.4;33.4 Reproduction of Velocities and Masses with the Effective Dispersion Law (Quasiparticle Hamiltonian);498
5.4.5;33.5 Louis de Broglie Ratio and the Estimation of the Energy Range of Electron Injection into Graphene;499
5.4.6;33.6 Main Characteristics of Analytical Dynamics for a Conduction Electron in Graphene;500
5.4.7;33.7 Conclusions;504
5.4.8;References;506
5.5;34 Simulation of the Formation of a Surface Nano-Crater Under the Action of High-Power Pulsed Radiation;508
5.5.1;34.1 Introduction;508
5.5.2;34.2 Dynamics Equations System for the Crater Formation;509
5.5.3;34.3 Investigation of the Asymptotic “Behavior” of the Crater Form Function;512
5.5.4;34.4 Conclusions;516
5.5.5;References;517
5.6;35 Ballistic Transmission of the Dirac Quasielectrons Through the Barrier in the 3D T209pological Insulators;519
5.6.1;35.1 Introduction;519
5.6.2;35.2 Model and Formulae;520
5.6.3;35.3 Results and Discussion;522
5.6.4;35.4 Conclusion;526
5.6.5;References;527
5.7;36 The Perspective Synthesis Methods and Researchof Nickel Ferrites;528
5.7.1;36.1 Introduction;528
5.7.2;36.2 Imaginations About Ferrites;529
5.7.2.1;36.2.1 The Microwave Combustion;534
5.7.2.2;36.2.2 Sol–Gel Method;536
5.7.2.3;36.2.3 The Investigation of Calcination Temperature;539
5.7.3;36.3 Applications of Ferrites;542
5.7.3.1;36.3.1 Catalysts Based on Nickel Ferrite;542
5.7.3.2;36.3.2 Nickel Ferrites for Gas Sensing;543
5.7.3.3;36.3.3 Nickel Ferrites in Water Treatment;543
5.7.4;36.4 Conclusions;544
5.7.5;References;545
5.8;37 Electron Irradiation of Carbon Nanotubes;547
5.8.1;References;551
5.9;38 Influence of Irradiation with Deuterium Ions on the Magnetic Properties and Structure of Nickel;552
5.9.1;38.1 Introduction;552
5.9.2;38.2 Methods;553
5.9.3;38.3 Results and Discussion;553
5.9.4;38.4 Conclusions;557
5.9.5;References;558
5.10;39 Formation of VI-B Group Metal Silicides from Molten Salts;559
5.10.1;39.1 Introduction;559
5.10.2;39.2 Experimental;560
5.10.3;39.3 Results and Discussion;561
5.10.4;39.4 Conclusions;564
5.10.5;References;564
5.11;40 The Structure of Reinforced Layers of the Complex Method;566
5.11.1;40.1 Introduction;566
5.11.2;40.2 Materials and Methods;566
5.11.3;40.3 Discussion;568
5.11.4;40.4 Conclusions;577
5.11.5;References;580
5.12;41 Technology and the Main Technological Equipment of the Process to Obtain N4HNO3 with Nanoporous Structure;581
5.12.1;41.1 Introduction;581
5.12.2;41.2 The Review and the Analysis of the Main Constructions of Vortex Granulators;582
5.12.3;41.3 An Influence of the Constructions of Vortex Granulators on the PAN Granules' Structure;586
5.12.4;41.4 Conclusions;589
5.12.5;References;589
5.13;42 Study of Structural Changes in a Nickel Oxide Containing Anode Material During Reduction and Oxidation at 600 C;591
5.13.1;42.1 Introduction;591
5.13.2;42.2 Materials and Methods;592
5.13.3;42.3 Results and Discussion;593
5.13.4;42.4 Conclusions;599
5.13.5;References;599
6;Index;601




