Buch, Englisch, 260 Seiten, Format (B × H): 161 mm x 244 mm, Gewicht: 1270 g
Theory and Practice
Buch, Englisch, 260 Seiten, Format (B × H): 161 mm x 244 mm, Gewicht: 1270 g
Reihe: Springer Series in Statistics
ISBN: 978-0-387-30369-7
Verlag: Springer
Modern apparatuses allow us to collect samples of functional data, mainly curves but also images. On the other hand, nonparametric statistics produces useful tools for standard data exploration. This book links these two fields of modern statistics by explaining how functional data can be studied through parameter-free statistical ideas. At the same time it shows how functional data can be studied through parameter-free statistical ideas, and offers an original presentation of new nonparametric statistical methods for functional data analysis.
Zielgruppe
Professional/practitioner
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
Weitere Infos & Material
Statistical Background for Nonparametric Statistics and Functional Data.- to Functional Nonparametric Statistics.- Some Functional Datasets and Associated Statistical Problematics.- What is a Well-Adapted Space for Functional Data?.- Local Weighting of Functional Variables.- Nonparametric Prediction from Functional Data.- Functional Nonparametric Prediction Methodologies.- Some Selected Asymptotics.- Computational Issues.- Nonparametric Classification of Functional Data.- Functional Nonparametric Supervised Classification.- Functional Nonparametric Unsupervised Classification.- Nonparametric Methods for Dependent Functional Data.- Mixing, Nonparametric and Functional Statistics.- Some Selected Asymptotics.- Application to Continuous Time Processes Prediction.- Conclusions.- Small Ball Probabilities and Semi-metrics.- Some Perspectives.




