Buch, Englisch, Band 415, 290 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 611 g
Buch, Englisch, Band 415, 290 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 611 g
Reihe: Studies in Computational Intelligence
ISBN: 978-3-642-28788-6
Verlag: Springer
This monograph presents examples of best practices when combining bioinspired algorithms with parallel architectures. The book includes recent work by leading researchers in the field and offers a map with the main paths already explored and new ways towards the future.
Parallel Architectures and Bioinspired Algorithms will be of value to both specialists in Bioinspired Algorithms, Parallel and Distributed Computing, as well as computer science students trying to understand the present and the future of Parallel Architectures and Bioinspired Algorithms.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Bionik, Biomimetik
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Algorithmen & Datenstrukturen
- Mathematik | Informatik EDV | Informatik Informatik Rechnerarchitektur
- Mathematik | Informatik EDV | Informatik Programmierung | Softwareentwicklung Funktionale, Logische, Parallele und Visuelle Programmierung
- Mathematik | Informatik EDV | Informatik Technische Informatik Grid-Computing & Paralleles Rechnen
Weitere Infos & Material
Creating and Debugging Performance CUDA C.- Optimizing Shape Design with Distributed Parallel Genetic Programming on GPUs.- Characterizing Fault-tolerance in Genetic Algorithms and programming.- Comparison of Frameworks for Parallel Multiobjective Evolutionary Optimization in Dynamic Problems.- An Empirical Study of Parallel and Distributed Particle Swarm Optimization.- The generalized Island Model.- Genetic Programming for the Evolution of Associative Memories.- Parallel Architectures for Improving the Performance of a GA based trading System.- A Knowledge-Based Operator for a Genetic Algorithm which Optimizes the Distribution of Sparse Matrix Data.- Evolutive approaches for Variable Selection using a Non-parametric Noise Estimator.- A chemical evolutionary mechanism for instantiating service-based applications.