Ferguson / Siepmann / Baum | Monte Carlo Methods in Chemical Physics, Volume 105 | E-Book | sack.de
E-Book

E-Book, Englisch, Band 105, 576 Seiten, E-Book

Reihe: Advances in Chemical Physics

Ferguson / Siepmann / Baum Monte Carlo Methods in Chemical Physics, Volume 105


1. Auflage 2009
ISBN: 978-0-470-14217-2
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

E-Book, Englisch, Band 105, 576 Seiten, E-Book

Reihe: Advances in Chemical Physics

ISBN: 978-0-470-14217-2
Verlag: John Wiley & Sons
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



In Monte Carlo Methods in Chemical Physics: An Introduction to the Monte Carlo Method for Particle Simulations J. Ilja Siepmann Random Number Generators for Parallel Applications Ashok Srinivasan, David M. Ceperley and Michael Mascagni Between Classical and Quantum Monte Carlo Methods: "Variational" QMC Dario Bressanini and Peter J. Reynolds Monte Carlo Eigenvalue Methods in Quantum Mechanics and Statistical Mechanics M. P. Nightingale and C.J. Umrigar Adaptive Path-Integral Monte Carlo Methods for Accurate Computation of Molecular Thermodynamic Properties Robert Q. Topper Monte Carlo Sampling for Classical Trajectory Simulations Gilles H. Peslherbe Haobin Wang and William L. Hase Monte Carlo Approaches to the Protein Folding Problem Jeffrey Skolnick and Andrzej Kolinski Entropy Sampling Monte Carlo for Polypeptides and Proteins Harold A. Scheraga and Minh-Hong Hao Macrostate Dissection of Thermodynamic Monte Carlo Integrals Bruce W. Church, Alex Ulitsky, and David Shalloway Simulated Annealing-Optimal Histogram Methods David M. Ferguson and David G. Garrett Monte Carlo Methods for Polymeric Systems Juan J. de Pablo and Fernando A. Escobedo Thermodynamic-Scaling Methods in Monte Carlo and Their Application to Phase Equilibria John Valleau Semigrand Canonical Monte Carlo Simulation: Integration Along Coexistence Lines David A. Kofke Monte Carlo Methods for Simulating Phase Equilibria of Complex Fluids J. Ilja Siepmann Reactive Canonical Monte Carlo J. Karl Johnson New Monte Carlo Algorithms for Classical Spin Systems G. T. Barkema and M.E.J. Newman

Ferguson / Siepmann / Baum Monte Carlo Methods in Chemical Physics, Volume 105 jetzt bestellen!

Weitere Infos & Material


An Introduction to the Monte Carlo Method for Particle Simulations(J. Siepmann).
Random Number Generators for Parallel Applications (A. Srinivasan,et al.).
Between Classical and Quantum Monte Carlo Methods: "Variational"QMC (D. Bressanini & P. Reynolds).
Monte Carlo Eigenvalue Methods in Quantum Mechanics and StatisticalMethods (M. Nightingale & C. Umrigar).
Adaptive Path-Integral Monte Carlo Methods for Accurate Computationof Molecular Thermodynamic Properties (R. Topper).
Monte Carlo Sampling for Classical Trajectory Simulations (G.Peslherbe, et al.).
Monte Carlo Approaches to the Protein Folding Problem (J. Skolnick& A. Kolinski).
Entropy Sampling Monte Carlo for Polypeptides and Proteins (H.Scheraga & M. Hao).
Macrostate Dissection of Thermodynamic Monte Carlo Integrals (B.Church, et al.).
Simulated Annealing-Optimal Histogram Methods (D. Ferguson & D.Garrett).
Monte Carlo Methods for Polymeric Systems (J. de Pablo & F.Escobedo).
Thermodynamic-Scaling Methods in Monte Carlo and Their Applicationto Phase Equilibria (J. Valleau).
Semigrand Canonical Monte Carlo Simulation: Integration AlongCoexistence Lines (D. Kofke).
Monte Carlo Methods for Simulating Phase Equilibria of ComplexFluids (J. Siepmann).
Reactive Canonical Monte Carlo (J. Johnson).
New Monte Carlo Algorithms for Classical Spin Systems (G. Barkema& M. Newman).
Indexes.


DAVID M. FERGUSON, PhD, is Associate Professor of Medicinal Chemistry at the University of Minnesota. He is a member of the graduate faculties in chemical physics and scientific computation. His research specialty is computer simulation of biophysical problems. J. ILJA SIEPMANN, PhD, is Assistant Professor of Chemistry and a member of the graduate faculties in chemical physics and chemical engineering and materials science at the University of Minnesota. His research specialties are computer simulation of complex fluids, statistical mechanics, and prediction of phase equilibria. DONALD G. TRUHLAR, PhD, is I.T. Distinguished Professor of Chemistry at the University of Minnesota, where he is also Director of the University of Minnesota Supercomputer Institute. He is a member of the graduate faculties in chemical physics and scientific computation. His research specialty is theoretical chemical dynamics.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.