Felsner | Geometric Graphs and Arrangements | Buch | 978-3-528-06972-8 | sack.de

Buch, Englisch, 170 Seiten, Paperback, Format (B × H): 170 mm x 240 mm, Gewicht: 323 g

Reihe: Advanced Lectures in Mathematics

Felsner

Geometric Graphs and Arrangements

Some Chapters from Combinatorial Geometry

Buch, Englisch, 170 Seiten, Paperback, Format (B × H): 170 mm x 240 mm, Gewicht: 323 g

Reihe: Advanced Lectures in Mathematics

ISBN: 978-3-528-06972-8
Verlag: Vieweg+Teubner Verlag


Among the intuitively appealing aspects of graph theory is its close connection to drawings and geometry. The development of computer technology has become a source of motivation to reconsider these connections, in particular geometric graphs are emerging as a new subfield of graph theory. Arrangements of points and lines are the objects for many challenging problems and surprising solutions in combinatorial geometry. The book is a collection of beautiful and mostly very recent results from the intersection of geometry, graph theory and combinatorics.
Felsner Geometric Graphs and Arrangements jetzt bestellen!

Zielgruppe


Upper undergraduate


Autoren/Hrsg.


Weitere Infos & Material


1 Geometric Graphs: Turán Problems.- 1.1 What is a Geometric Graph?.- 1.2 Fundamental Concepts in Graph Theory.- 1.3 Planar Graphs.- 1.4 Outerplanar Graphs and Convex Geometric Graphs.- 1.5 Geometric Graphs without (k + 1)-Pairwise Disjoint Edges.- 1.6 Geometric Graphs without Parallel Edges.- 1.7 Notes and References.- 2 Schnyder Woods or How to Draw a Planar Graph?.- 2.1 Schnyder Labelings and Woods.- 2.2 Regions and Coordinates.- 2.3 Geodesic Embeddings of Planar Graphs.- 2.4 Dual Schnyder Woods.- 2.5 Order Dimension of 3-Polytopes.- 2.6 Existence of Schnyder Labelings.- 2.7 Notes and References.- 3 Topological Graphs: Crossing Lemma and Applications.- 3.1 Crossing Numbers.- 3.2 Bounds for the Crossing Number.- 3.3 Improving the Crossing Constant.- 3.4 Crossing Numbers and Incidence Problems.- 3.5 Notes and References.- 4 k-Sets and k-Facets.- 4.1 k-Sets in the Plane.- 4.2 Beyond the Plane.- 4.3 The Rectilinear Crossing Number of Kn.- 4.4 Notes and References.- 5 Combinatorial Problems for Sets of Points and Lines.- 5.1 Arrangements, Planes, Duality.- 5.2 Sylvester’s Problem.- 5.3 How many Lines are Spanned by n Points?.- 5.4 Triangles in Arrangements.- 5.5 Notes and References.- 6 Combinatorial Representations of Arrangements of Pseudolines.- 6.1 Marked Arrangements and Sweeps.- 6.2 Allowable Sequences and Wiring Diagrams.- 6.3 Local Sequences.- 6.4 Zonotopal Tilings.- 6.5 Triangle Signs.- 6.6 Signotopes and their Orders.- 6.7 Notes and References.- 7 Triangulations and Flips.- 7.1 Degrees in the Flip-Graph.- 7.2 Delaunay Triangulations.- 7.3 Regular Triangulations and Secondary Polytopes.- 7.4 The Associahedron and Catalan families.- 7.5 The Diameter of Gn and Hyperbolic Geometry.- 7.6 Notes and References.- 8 Rigidity and Pseudotriangulations.- 8.1 Rigidity,Motion and Stress.- 8.2 Pseudotriangles and Pseudotriangulations.- 8.3 Expansive Motions.- 8.4 The Polyhedron of of Pointed Pseudotriangulations.- 8.5 Expansive Motions and Straightening Linkages.- 8.6 Notes and References.


Prof. Dr. Stefan Felsner, Institut für Mathematik, Technische Universität Berlin, Germany.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.