Felix | Algebraic Topology - Rational Homotopy | E-Book | sack.de
E-Book

E-Book, Englisch, Band 1318, 246 Seiten, eBook

Reihe: Lecture Notes in Mathematics

Felix Algebraic Topology - Rational Homotopy

Proceedings of a Conference held in Louvain-la-Neuve, Belgium, May 2-6, 1986

E-Book, Englisch, Band 1318, 246 Seiten, eBook

Reihe: Lecture Notes in Mathematics

ISBN: 978-3-540-39204-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This proceedings volume centers on new developments in rational homotopy and on their influence on algebra and algebraic topology. Most of the papers are original research papers dealing with rational homotopy and tame homotopy, cyclic homology, Moore conjectures on the exponents of the homotopy groups of a finite CW-c-complex and homology of loop spaces. Of particular interest for specialists are papers on construction of the minimal model in tame theory and computation of the Lusternik-Schnirelmann category by means articles on Moore conjectures, on tame homotopy and on the properties of Poincaré series of loop spaces.
Felix Algebraic Topology - Rational Homotopy jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


Recent progress in hilbert and poincare series.- Homotopies d'algèbres de Lie et de leurs algèbres enveloppantes.- Combinatorial homotopy.- Cyclic homology of commutative algebras I.- Cohomology of nilmanifolds.- A dual simplicial de rham complex.- Maps of BZ/pZ to BG.- Formalite d'une application et suite spectrale d'Eilenberg-Moore.- An euler-poincare characteristic for 1-connected spaces with noetherian rational cohomology.- Notions of category in differential algebra.- Séries de poincaré des modules multi-gradués sur les anneaux monomiaux.- Un modele de sullivan en homotopie moderee.- Report on tame homotopy theory via differential forms.- La filtration nilpotente de la categorie ? et la cohomologie des espaces de lacets.- Moore conjectures.- Cohomological physics.- Cyclic homology and quillen homology of a commutative algebra.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.