Buch, Englisch, Band 347, 230 Seiten, Format (B × H): 160 mm x 240 mm, Gewicht: 589 g
Volume III: Representations of Lie Groups
Buch, Englisch, Band 347, 230 Seiten, Format (B × H): 160 mm x 240 mm, Gewicht: 589 g
Reihe: Mathematics and Its Applications
ISBN: 978-0-7923-3834-5
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Mathematische Analysis Reelle Analysis
- Mathematik | Informatik EDV | Informatik EDV & Informatik Allgemein
- Mathematik | Informatik Mathematik Algebra Algebraische Strukturen, Gruppentheorie
- Mathematik | Informatik Mathematik Mathematische Analysis Moderne Anwendungen der Analysis
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
Weitere Infos & Material
I. General remarks.- II. Notations.- III. Lie algebras: some basics.- 1 Operator calculus and Appell systems.- I. Boson calculus.- II. Holomorphic canonical calculus.- III. Canonical Appell systems.- 2 Representations of Lie groups.- I. Coordinates on Lie groups.- II. Dual representations.- III. Matrix elements.- IV. Induced representations and homogeneous spaces.- 3 General Appell systems.- I. Convolution and stochastic processes.- II. Stochastic processes on Lie groups.- III. Appell systems on Lie groups.- 4 Canonical systems in several variables.- I. Homogeneous spaces and Cartan decompositions.- II. Induced representation and coherent states.- III. Orthogonal polynomials in several variables.- 5 Algebras with discrete spectrum.- I. Calculus on groups: review of the theory.- II. Finite-difference algebra.- III. q-HW algebra and basic hypergeometric functions.- IV. su2 and Krawtchouk polynomials.- V. e2 and Lommel polynomials.- 6 Nilpotent and solvable algebras.- I. Heisenberg algebras.- II. Type-H Lie algebras.- III. Upper-triangular matrices.- IV. Affine and Euclidean algebras.- 7 Hermitian symmetric spaces.- I. Basic structures.- II. Space of rectangular matrices.- III. Space of skew-symmetric matrices.- IV. Space of symmetric matrices.- 8 Properties of matrix elements.- I. Addition formulas.- II. Recurrences.- III. Quotient representations and summation formulas.- 9 Symbolic computations.- I. Computing the pi-matrices.- II. Adjoint group.- III. Recursive computation of matrix elements.- IV. Symbolic computation of Appell systems.- MAPLE output and procedures.- References.