Feinsilver / Schott | Algebraic Structures and Operators Calculus | Buch | 978-0-7923-3834-5 | sack.de

Buch, Englisch, Band 347, 230 Seiten, Format (B × H): 160 mm x 240 mm, Gewicht: 589 g

Reihe: Mathematics and Its Applications

Feinsilver / Schott

Algebraic Structures and Operators Calculus

Volume III: Representations of Lie Groups

Buch, Englisch, Band 347, 230 Seiten, Format (B × H): 160 mm x 240 mm, Gewicht: 589 g

Reihe: Mathematics and Its Applications

ISBN: 978-0-7923-3834-5
Verlag: Springer


Introduction I. General remarks. 1 II. Notations. 5 III. Lie algebras: some basics. 8 Chapter 1 Operator calculus and Appell systems I. Boson calculus. 17 II. Holomorphic canonical calculus. 18 III. Canonical Appell systems. 23 Chapter 2 Representations of Lie groups I. Coordinates on Lie groups. 28 II. Dual representations. 29 III. Matrix elements. 37 IV. Induced representations and homogeneous spaces. 40 General Appell systems Chapter 3 I. Convolution and stochastic processes. 44 II. Stochastic processes on Lie groups. 46 III. Appell systems on Lie groups. 49 Chapter 4 Canonical systems in several variables I. Homogeneous spaces and Cartan decompositions. 54 II. Induced representation and coherent states. 62 III. Orthogonal polynomials in several variables. 68 Chapter 5 Algebras with discrete spectrum I. Calculus on groups: review of the theory. 83 II. Finite-difference algebra. 85 III. q-HW algebra and basic hypergeometric functions. 89 IV. su2 and Krawtchouk polynomials. 93 V. e2 and Lommel polynomials. 101 Chapter 6 Nilpotent and solvable algebras I. Heisenberg algebras. 113 II. Type-H Lie algebras. 118 Vll III. Upper-triangular matrices. 125 IV. Affine and Euclidean algebras. 127 Chapter 7 Hermitian symmetric spaces I. Basic structures. 131 II. Space of rectangular matrices. 133 III. Space of skew-symmetric matrices. 136 IV. Space of symmetric matrices. 143 Chapter 8 Properties of matrix elements I. Addition formulas. 147 II. Recurrences. 148 III. Quotient representations and summation formulas. 149 Chapter 9 Symbolic computations I. Computing the pi-matrices. 153 II. Adjoint group. 154 III. Recursive computation of matrix elements.
Feinsilver / Schott Algebraic Structures and Operators Calculus jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


I. General remarks.- II. Notations.- III. Lie algebras: some basics.- 1 Operator calculus and Appell systems.- I. Boson calculus.- II. Holomorphic canonical calculus.- III. Canonical Appell systems.- 2 Representations of Lie groups.- I. Coordinates on Lie groups.- II. Dual representations.- III. Matrix elements.- IV. Induced representations and homogeneous spaces.- 3 General Appell systems.- I. Convolution and stochastic processes.- II. Stochastic processes on Lie groups.- III. Appell systems on Lie groups.- 4 Canonical systems in several variables.- I. Homogeneous spaces and Cartan decompositions.- II. Induced representation and coherent states.- III. Orthogonal polynomials in several variables.- 5 Algebras with discrete spectrum.- I. Calculus on groups: review of the theory.- II. Finite-difference algebra.- III. q-HW algebra and basic hypergeometric functions.- IV. su2 and Krawtchouk polynomials.- V. e2 and Lommel polynomials.- 6 Nilpotent and solvable algebras.- I. Heisenberg algebras.- II. Type-H Lie algebras.- III. Upper-triangular matrices.- IV. Affine and Euclidean algebras.- 7 Hermitian symmetric spaces.- I. Basic structures.- II. Space of rectangular matrices.- III. Space of skew-symmetric matrices.- IV. Space of symmetric matrices.- 8 Properties of matrix elements.- I. Addition formulas.- II. Recurrences.- III. Quotient representations and summation formulas.- 9 Symbolic computations.- I. Computing the pi-matrices.- II. Adjoint group.- III. Recursive computation of matrix elements.- IV. Symbolic computation of Appell systems.- MAPLE output and procedures.- References.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.