Fathi / Laudenbach / Poénaru | Thurston's Work on Surfaces | Buch | 978-0-691-14735-2 | sack.de

Buch, Englisch, 288 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 418 g

Reihe: Mathematical Notes

Fathi / Laudenbach / Poénaru

Thurston's Work on Surfaces


Erscheinungsjahr 2012
ISBN: 978-0-691-14735-2
Verlag: Princeton University Press

Buch, Englisch, 288 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 418 g

Reihe: Mathematical Notes

ISBN: 978-0-691-14735-2
Verlag: Princeton University Press


This book provides a detailed exposition of William Thurston's work on surface homeomorphisms, available here for the first time in English. Based on material of Thurston presented at a seminar in Orsay from 1976 to 1977, it covers topics such as the space of measured foliations on a surface, the Thurston compactification of Teichmüller space, the Nielsen-Thurston classification of surface homeomorphisms, and dynamical properties of pseudo-Anosov diffeomorphisms. Thurston never published the complete proofs, so this text is the only resource for many aspects of the theory.Thurston was awarded the prestigious Fields Medal in 1982 as well as many other prizes and honors, and is widely regarded to be one of the major mathematical figures of our time. Today, his important and influential work on surface homeomorphisms is enjoying continued interest in areas ranging from the Poincaré conjecture to topological dynamics and low-dimensional topology.Conveying the extraordinary richness of Thurston's mathematical insight, this elegant and faithful translation from the original French will be an invaluable resource for the next generation of researchers and students.

Fathi / Laudenbach / Poénaru Thurston's Work on Surfaces jetzt bestellen!

Weitere Infos & Material


Preface ix

Foreword to the First Edition ix

Foreword to the Second Edition x

Translators? Notes xi

Acknowledgments xii

Abstract xiii

Chapter 1 An Overview of Thurston?s Theorems on Surfaces 1

Valentin Po?naru

1.1 Introduction 1

1.2 The Space of Simple Closed Curves 2

1.3 Measured Foliations 3

1.4 Teichm?ller Space 5

1.5 Pseudo-Anosov Diffeomorphisms 6

1.6 The Case of the Torus 8

Chapter 2 Some Reminders about the Theory of Surface Diffeomorphisms 14

Valentin Po?naru

2.1 The Space of Homotopy Equivalences of a Surface 14

2.2 The Braid Groups 15

2.3 Diffeomorphisms of the Pair of Pants 19

Chapter 3 Review of Hyperbolic Geometry in Dimension 2 25

Valentin Po?naru

3.1 A Little Hyperbolic Geometry 25

3.2 The Teichm?ller Space of the Pair of Pants 27

3.3 Generalities on the Geometric Intersection of Simple Closed Curves 35

3.4 Systems of Simple Closed Curves and Hyperbolic Isometries 42

V4 The Space of Simple Closed Curves in a Surface 44

Valentin Po?naru

4.1 The Weak Topology on the Space of Simple Closed Curves 44

4.2 The Space of Multicurves 46

4.3 An Explicit Parametrization of the Space of Multicurves 47

A Pair of Pants Decompositions of a Surface 53

Albert Fathi

Chapter 5 Measured Foliations 56

Albert Fathi and Fran?ois Laudenbach

5.1 Measured Foliations and the Euler-Poincar? Formula 56

5.2 Poincar? Recurrence and the Stability Lemma 59

5.3 Measured Foliations and Simple Closed Curves 62

5.4 Curves as Measured Foliations 71

B Spines of Surfaces 74

Valentin Po?naru

Chapter 6 The Classification of Measured Foliations 77

Albert Fathi

6.1 Foliations of the Annulus 78

6.2 Foliations of the Pair of Pants 79

6.3 The Pants Seam 84

6.4 The Normal Form of a Foliation 87

6.5 Classification of Measured Foliations 92

6.6 Enlarged Curves as Functionals 97

6.7 Minimality of the Action of the Mapping Class Group on PMF 98

6.8 Complementary Measured Foliations 100

C Explicit Formulas for Measured Foliations 101

Albert Fathi

Chapter 7 Teichm?ller Space 107

Adrien Douady; notes by Fran?ois Laudenbach

Chapter 8 The Thurston Compactification of Teichm?ller Space 118

Albert Fathi and Fran?ois Laudenbach

8.1 Preliminaries 118

8.2 The Fundamental Lemma 121

8.3 The Manifold T 125

D Estimates of Hyperbolic Distances 128

Albert Fathi

D.1 The Hyperbolic Distance from i to a Point z0 128

D.2 Relations between the Sides of a Right Hyperbolic Hexagon 129

D.3 Bounding Distances in Pairs of Pants 131

Chapter 9 The Classification of Surface Diffeomorphisms 135

Valentin Po?naru

9.1 Preliminaries 135

9.2 Rational Foliations (the Reducible Case) 136

9.3 Arational Measured Foliations 137

9.4 Arational Foliations with ? = 1 (the Finite Order Case) 140

9.5 Arational Foliations with ? 6= 1 (the Pseudo-Anosov Case) 141

9.6 Some Properties of Pseudo-Anosov Diffeomorphisms 150

Chapter 10 Some Dynamics of Pseudo-Anosov Diffeomorphisms 154

Albert Fathi and Michael Shub

10.1 Topological Entropy 154

10.2 The Fundamental Group and Entropy 157

10.3 Subshifts of Finite Type 162

10.4 The Entropy of Pseudo-Anosov Diffeomorphisms 165

10.5 Constructing Markov Partitions for Pseudo-Anosov Diffeomorphisms

171

10.6 Pseudo-Anosov Diffeomorphisms are Bernoulli 173

Chapter 11 Thurston?s Theory for Surfaces with Boundary 177

Fran?ois Laudenbach

11.1 The Spaces of Curves and Measured Foliations 177

11.2 Teichm?ller Space and Its Compactification 179

11.3 A Sketch of the Classification of Diffeomorphisms 180

11.4 Thurston?s Classification and Nielsen?s Theorem 184

11.5 The Spectral Theorem 188

Chapter 12 Uniqueness Theorems for Pseudo-Anosov Diffeomorphisms 191

Albert Fathi and Valentin Po?naru

12.1 Statement of Results 191

12.2 The Perron-Frobenius Theorem and Markov Partitio


Kim, Djun
Djun Kim is a Skylight research associate in mathematics at the University of British Columbia.

Fathi, Albert
Albert Fathi is professor at the École Normale Supérieure de Lyon.

Margalit, Dan
Dan Margalit is assistant professor of mathematics at Georgia Institute of Technology. He is the coauthor of A Primer on Mapping Class Groups (Princeton).

Poénaru, Valentin
Valentin Poénaru is professor emeritus at the Université Paris-Sud, Orsay.

Laudenbach, François
François Laudenbach is professor emeritus at the University of Nantes.

Albert Fathi is professor at the École Normale Supérieure de Lyon. François Laudenbach is professor emeritus at the University of Nantes. Valentin Poénaru is professor emeritus at the Université Paris-Sud, Orsay. Djun Kim is a Skylight research associate in mathematics at the University of British Columbia. Dan Margalit is assistant professor of mathematics at Georgia Institute of Technology. He is the coauthor of "A Primer on Mapping Class Groups" (Princeton).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.