E-Book, Englisch, Band 13, 486 Seiten
Fardis Advances in Performance-Based Earthquake Engineering
1. Auflage 2010
ISBN: 978-90-481-8746-1
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 13, 486 Seiten
Reihe: Geotechnical, Geological and Earthquake Engineering
ISBN: 978-90-481-8746-1
Verlag: Springer Netherlands
Format: PDF
Kopierschutz: 1 - PDF Watermark
Performance-based Earthquake Engineering has emerged before the turn of the century as the most important development in the field of Earthquake Engineering during the last three decades. It has since then started penetrating codes and standards on seismic assessment and retrofitting and making headway towards seismic design standards for new structures as well. The US have been a leader in Performance-based Earthquake Engineering, but also Europe is a major contributor. Two Workshops on Performance-based Earthquake Engineering, held in Bled (Slovenia) in 1997 and 2004 are considered as milestones. The ACES Workshop in Corfu (Greece) of July 2009 builds on them, attracting as contributors world-leaders in Performance-based Earthquake Engineering from North America, Europe and the Pacific rim (Japan, New Zealand, Taiwan, China). It covers the entire scope of Performance-based Earthquake Engineering: Ground motions for performance-based earthquake engineering; Methodologies for Performance-based seismic design and retrofitting; Implementation of Performance-based seismic design and retrofitting; and Advanced seismic testing for performance-based earthquake engineering. Audience: This volume will be of interest to scientists and advanced practitioners in structural earthquake engineering, geotechnical earthquake engineering, engineering seismology, and experimental dynamics.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;9
3;Contributors;13
4;Part I Ground Motions for Performance-Based Earthquake Engineering;21
4.1;1 Mapping Seismic Hazard for the Needs of Displacement-Based Design: The Case of Italy;22
4.1.1;1.1 Introduction;22
4.1.2;1.2 Basic Input Data;22
4.1.3;1.3 Seismic Hazard Maps and UH DRS ;24
4.1.4;1.4 Overdamped, Uniform Hazard Spectra;27
4.1.5;1.5 Basin Effects and UH Probabilistic Spectra: A Case Study;28
4.1.6;1.6 Conclusions;31
4.1.7;References;32
4.2;2 Some Examples of 1D, Fully Stochastic Site Response Analyses of Soil Deposits;34
4.2.1;2.1 Introduction;34
4.2.2;2.2 1D Stochastic Ground Response Analyses;35
4.2.2.1;2.2.1 Procedure of Analysis;36
4.2.3;2.3 Case Study 1: Archaeological Site at Kancheepuram, India;36
4.2.4;2.4 Case Study 2: Regina Montis Regalis Basilica with the Largest Elliptical Dome at Vicoforte in Northern Italy;40
4.2.5;2.5 Concluding Remarks;44
4.2.6;References;44
4.3;3 Evaluation of the Coherence of Strong Ground Motions Using Wavelet Analysis;46
4.3.1;3.1 Introduction;46
4.3.2;3.2 Wavelet Analysis;49
4.3.3;3.3 Selection of the Best Matching Wavelet;50
4.3.4;3.4 Extension of the Wavelet Transform by Also Modulating the Phase and the Oscillatory Character of the Elementary Signal;52
4.3.5;3.5 Conclusions;56
4.3.6;References ;57
4.4;4 Real, Scaled, Adjusted and Artificial Records: A Displacement and Cyclic Response Assessment;58
4.4.1;4.1 Introduction;58
4.4.2;4.2 Records;59
4.4.3;4.3 Analyses and Structural Response Measures;62
4.4.4;4.4 Results and Discussion;63
4.4.5;4.5 Conclusions;65
4.4.6;References;66
4.5;5 Theoretical Consistency of Common Record Selection Strategies in Performance-Based Earthquake Engineering;67
4.5.1;5.1 Introduction;67
4.5.2;5.2 Treatment of Ground-Motion Variability in PBEE;68
4.5.3;5.3 Current Approaches to Record Selection;70
4.5.3.1;5.3.1 Linear Scaling to Sa(T1);71
4.5.3.2;5.3.2 Linear Scaling to a Target Spectrum Over a Period Range;72
4.5.3.3;5.3.3 Linear Scaling and Spectrum Matching;72
4.5.4;5.4 Implications for Record Selection;73
4.5.5;5.5 Conclusions;75
4.5.6;References;75
4.6;6 Long-Period Earthquake Ground Motion: Recent Advances and Observations from the April 6 2009, Mw6.3 L'Aquila Earthquake, Italy;77
4.6.1;6.1 Introduction;77
4.6.2;6.2 Near-Fault Strong Motion Records from the Mw 6.3 April 6 2009 LAquila Earthquake: Observations at Long Periods;79
4.6.2.1;6.2.1 Geological Setting and Available Strong Motion Stations;80
4.6.2.2;6.2.2 Observed Earthquake Ground Motion;81
4.6.2.3;6.2.3 Displacement Response Spectra;83
4.6.3;References;85
4.7;7 Uncertainty in Nonlinear SDoF Response Due to Long-Period Noise of Accelerograms;87
4.7.1;7.1 Introduction;87
4.7.2;7.2 Strong Motion Data;89
4.7.3;7.3 Uncertainty in Nonlinear SDoF Deformation Demands Caused by High-Pass Filtering;89
4.7.4;7.4 Spectral Period Ranges for the Minimum Influence of High-Pass Filtering;92
4.7.5;7.5 Summary and Conclusions;95
4.7.6;References;96
4.8;8 Are Current Design Spectra Sufficient for Soil-Structure Systems on Soft Soils?;97
4.8.1;8.1 The Problem: Code Spectra Versus Reality;97
4.8.2;8.2 Why This Discrepancy?;98
4.8.3;8.3 Summary of the Analytical (Remedial) Study;99
4.8.4;8.4 Results: Towards a More Rational Spectrum;101
4.8.5;8.5 The Uniqueness of the Bi-Normalized Spectrum;102
4.8.6;8.6 Conclusion, Limitations;103
4.8.7;References;104
4.9;9 Elastic Demand Spectra;106
4.9.1;9.1 Introduction;106
4.9.2;9.2 Comparison of EC8 Elastic Demand Spectra with Worldwide Strong Ground Motion Records;107
4.9.2.1;9.2.1 Selection of Strong Ground Motion Records;107
4.9.2.2;9.2.2 Processing of Strong Ground Motion Records;108
4.9.2.3;9.2.3 Soil Type B;108
4.9.2.4;9.2.4 Soil Type C;109
4.9.2.5;9.2.5 Effect of SFSI and Nonlinear Soil Behaviour on Seismic Demand;110
4.9.2.6;9.2.6 Comparative Results;111
4.9.3;9.3 Effect of Soil Improvement and SFSI on Seismic Demand;113
4.9.3.1;9.3.1 Replacement with Rubber -- Soil Mixtures;113
4.9.3.2;9.3.2 Stone Columns;114
4.9.4;9.4 Conclusions;115
4.9.5;References;116
5;Part II Performance-Based Seismic Design and Retrofitting Methodologies;117
5.1;10 A Dynamic Macro-Element for Performance-Based Design of Foundations;118
5.1.1;10.1 General Context Motivations;118
5.1.2;10.2 Dynamic Macro-Element;119
5.1.3;10.3 Numerical Application;124
5.1.4;10.4 Concluding Remarks;126
5.1.5;References;126
5.2;11 New Concept on Fail-Safe Design of Foundation Structure Systems Insensitive to Extreme Motions;128
5.2.1;11.1 Introduction;128
5.2.2;11.2 Recent Earthquake Motions;129
5.2.3;11.3 Full-Scale Dynamic Test of 3-Storey Buildings at E-Defense;130
5.2.3.1;11.3.1 Plan of the Test Specimens;130
5.2.3.2;11.3.2 Design Details and Seismic Evaluation of the Specimen;132
5.2.3.3;11.3.3 Static Pushover Test on Base Slip Behaviour;133
5.2.4;11.4 Dynamic Test Results of the Bare Specimen;133
5.2.5;11.5 Fail-Safe Design against Extreme Motions;136
5.2.6;11.6 Conclusions;138
5.2.7;References;139
5.3;12 Performance-Based Seismic Design of Tall Buildings in the Western United States;140
5.3.1;12.1 Introduction;140
5.3.2;12.2 Building Regulation Issues;142
5.3.3;12.3 First-Generation Procedures;143
5.3.4;12.4 PEER Tall Buildings Initiative;145
5.3.5;12.5 PEER Tall Building Design Guidelines;145
5.3.6;12.6 Summary;149
5.3.7;References;149
5.4;13 Introduction to a Model Code for Displacement-Based Seismic Design;151
5.4.1;13.1 Introduction;151
5.4.2;13.2 Fundamentals of Direct Displacement-Based Design;151
5.4.3;13.3 Overview of the New Model Code;153
5.4.3.1;13.3.1 Design Seismicity;154
5.4.3.2;13.3.2 Performance Criteria;156
5.4.3.3;13.3.3 Structural Typologies Considered in the Draft Code;156
5.4.3.4;13.3.4 Design Displacement Profiles;158
5.4.3.5;13.3.5 Equivalent Viscous Damping;158
5.4.3.6;13.3.6 Capacity Design;158
5.4.3.7;13.3.7 Additional Aspects of the Draft Model Code;159
5.4.4;13.4 Conclusions;160
5.4.5;References;160
5.5;14 A Performance-Based Seismic Design Procedure for 3D R/C Buildings, Explicitly Accounting for Deformation Control;163
5.5.1;14.1 Introduction;163
5.5.2;14.2 Description of the Proposed Method;164
5.5.2.1; Step 1: Flexural Design of Plastic Hinge Zones Based on Serviceability Criteria;164
5.5.2.2; Step 2: Selection of Seismic Actions;166
5.5.2.3; Step 3: Set-Up of the Partially Inelastic Model;166
5.5.2.4; Step 4: Serviceability Verifications;166
5.5.2.5; Step 5: Design of Longitudinal Reinforcement in Columns (and walls) for the ''Life Safety'' Limit State;167
5.5.2.6; Step 6: Design for Shear;167
5.5.2.7; Step 7: Detailing for Confinement, Anchorages and Lap Splices;168
5.5.3;14.3 Application to Ten-Storey Buildings with Setbacks;168
5.5.3.1;14.3.1 Discussion of Different Design Aspects;168
5.5.3.2;14.3.2 Evaluation of Different Designs;169
5.5.4;14.4 Concluding Remarks;172
5.5.5;References;172
5.6;15 A New Seismic Design Method for Steel Structures;174
5.6.1;15.1 Introduction;174
5.6.2;15.2 Steps of Proposed Design Method;175
5.6.3;15.3 Application of the Proposed HFD Design Method;179
5.6.3.1;15.3.1 Description of Building and Design Assumption;179
5.6.3.2;15.3.2 Definition of Seismic Performance Levels;180
5.6.3.3;15.3.3 Moment Resisting Frames (MRF);181
5.6.3.4;15.3.4 Evaluation of the Design Through Nonlinear Dynamic Analyses;183
5.6.4;15.4 Conclusions;183
5.6.5;References;184
5.7;16 Significance of Modeling Deterioration in Structural Components for Predicting the Collapse Potential of Structures Under Earthquake Excitations;185
5.7.1;16.1 Introduction;185
5.7.2;16.2 Modeling of Strength and Stiffness Deterioration in Structural Components;186
5.7.2.1;16.2.1 Observations on Component Behavior;186
5.7.2.2;16.2.2 The Ibarra-Krawinkler Deterioration Model;187
5.7.3;16.3 Modeling of Structures for Collapse Prediction;189
5.7.4;16.4 Representation of Seismic Input and Prediction of Collapse Capacity;190
5.7.5;16.5 Assessment of Probability of Collapse;191
5.7.6;16.6 Conclusions;192
5.7.7;References;193
5.8;17 Enhanced Building-Specific Seismic Performance Assessment;194
5.8.1;17.1 Introduction;194
5.8.2;17.2 Improved Loss Estimation Methodology;196
5.8.3;17.3 Illustrative Examples;199
5.8.4;17.4 Summary and Conclusions;201
5.8.5;References;201
5.9;18 A Damage Spectrum for Performance-Based Design;203
5.9.1;18.1 Introduction;203
5.9.2;18.2 Quantification of Damage;203
5.9.3;18.3 Demand Representation;204
5.9.4;18.4 Ductility as the Damage Limiting Parameter;204
5.9.5;18.5 Period as the Input Design Parameter;204
5.9.6;18.6 Performance Point Index;205
5.9.6.1;18.6.1 Dissipated Energy;206
5.9.6.2;18.6.2 Ductility Capacity;207
5.9.6.3;18.6.3 Ultimate Hysteretic Energy;207
5.9.7;18.7 Proposed Damage Index;208
5.9.8;18.8 Constant Damage Spectrum;208
5.9.9;18.9 Damage-Based Assessment of a RC Frame;209
5.9.10;18.10 Conclusions;211
5.9.11;References;211
5.10;19 Construction of Response Spectra for Inelastic Asymmetric-Plan Structures;212
5.10.1;19.1 Introduction;212
5.10.2;19.2 Theoretical Background;213
5.10.2.1;19.2.1 Two-Degree-of-Freedom Modal Systems;213
5.10.2.2;19.2.2 Independent Elastic 2DOF Modal Parameters;215
5.10.2.3;19.2.3 Relationships Between the Inelastic 2DOF Modal Parameters and the Strength Ratio;216
5.10.3;19.3 Parametric Study;217
5.10.3.1;19.3.1 Ranges of Elastic 2DOF Modal Parameters;217
5.10.3.2;19.3.2 Ranges of Inelastic 2DOF Modal Parameters;218
5.10.4;19.4 T-R Constant-Strength Response Spectra;219
5.10.5;19.5 Conclusions;219
5.10.6;References;220
5.11;20 Multi-Mode Pushover Analysis with Generalized Force Vectors;221
5.11.1;20.1 Introduction;221
5.11.2;20.2 Generalized Force Vectors;222
5.11.3;20.3 Target Seismic Deformation Demand;224
5.11.4;20.4 Generalized Pushover Algorithm;225
5.11.5;20.5 Test Case: 12 Story RC Symmetrical Plan Building;225
5.11.5.1;20.5.1 Strong Ground Motions;226
5.11.5.2;20.5.2 Implementation of the GPA algorithm;226
5.11.5.3;20.5.3 Results;228
5.11.6;20.6 Conclusions;228
5.11.7;References;230
5.12;21 A Practice-Oriented Approach for Probabilistic Seismic Assessment of Building Structures;232
5.12.1;21.1 Introduction;232
5.12.2;21.2 Framework for Probabilistic Performance Assessment;233
5.12.3;21.3 Simplified Procedure;234
5.12.4;21.4 Probabilistic Assessment of the Example Structures;236
5.12.5;21.5 Conclusions;239
5.12.6;References;240
5.13;22 Direct Probability-Based Seismic Design of RC Buildings;241
5.13.1;22.1 Introduction;241
5.13.2;22.2 Proposal;242
5.13.3;22.3 Application to an Elasto-Plastic SDOF Oscillator;245
5.13.4;22.4 Application to a Five-Storey RC Plane Frame;245
5.13.5;22.5 Conclusions;249
5.13.6;References;249
5.14;23 Probabilistic Models for Visual Damage;251
5.14.1;23.1 Introduction;251
5.14.2;23.2 Probabilistic Models and Reliability Analysis;252
5.14.3;23.3 Development of Probabilistic Models;255
5.14.4;23.4 Modeling the Consequences of Damage;258
5.14.5;23.5 Conclusions;259
5.14.6;References;259
6;Part III Performance-Based Seismic Design and Retrofitting Implementation;261
6.1;24 Dual Flexural Plastic Hinge Design for Reducing Higher-Mode Effects on High-Rise Cantilever Wall Buildings;262
6.1.1;24.1 Introduction;262
6.1.2;24.2 Dual Plastic Hinge Design Approach;263
6.1.3;24.3 Numerical Verification of the Design Approaches;264
6.1.3.1;24.3.1 Buildings Design;264
6.1.3.1.1;24.3.1.1 Designs Based on ACI-318 2005 Building Code;265
6.1.3.1.2;24.3.1.2 Single Plastic Hinge (SPH) Design Approach;266
6.1.3.1.3;24.3.1.3 Dual Plastic Hinge (DPH) Design Approach;266
6.1.3.2;24.3.2 Computational Model;266
6.1.3.3;24.3.3 Ground Motions;266
6.1.3.4;24.3.4 Results of the Analyses;266
6.1.4;24.4 Summary and Conclusions;269
6.1.5;References ;270
6.2;25 High Seismic Performance Systems for Steel Structures;272
6.2.1;25.1 Introduction;272
6.2.2;25.2 Residual Response of Ductile Steel Structures;273
6.2.3;25.3 Steel Structures with Replaceable Nonlinear Links;275
6.2.4;25.4 Steel Self-Centering Frame Systems;276
6.2.4.1;25.4.1 Post-Tensioned Self-Centering Moment-Resisting Frames;277
6.2.4.2;25.4.2 The Self-Centering Energy Dissipative (SCED) Bracing System;278
6.2.5;25.5 Conclusion;279
6.2.6;References;279
6.3;26 Performance-Based Seismic Design and Experimental Evaluation of Steel MRFs with Compressed Elastomer Dampers;281
6.3.1;26.1 Introduction;281
6.3.2;26.2 Steel MRF with Compressed Elastomer Dampers;282
6.3.2.1;26.2.1 Prototype Building;282
6.3.2.2;26.2.2 Design of perimeter MRF as a Conventional SMRF;283
6.3.2.3;26.2.3 Design of Dampers for MRF;283
6.3.3;26.3 Real-Time Hybrid Simulation;284
6.3.3.1;26.3.1 Real-Time Integrated Control System Architecture, Analytical Substructure Modeling and Experimental Substructure Test Setup;284
6.3.3.2;26.3.2 Real-Time Integration of the Equation of Motion;286
6.3.4;26.4 Real-Time Hybrid Simulation Results;287
6.3.5;26.5 Summary and Conclusions;289
6.3.6;References;289
6.4;27 Performance-Based Design of Self-Centering Steel Frame Systems;291
6.4.1;27.1 Introduction;291
6.4.2;27.2 SC-MRF Overview;292
6.4.3;27.3 Performance-Based Design of SC-MRFs;293
6.4.4;27.4 SC-MRF Experimental Program;294
6.4.5;27.5 SC-MRF Experimental Results;296
6.4.6;27.6 SC-CBF Research;298
6.4.7;27.7 Summary and Conclusions;299
6.4.8;References;300
6.5;28 Damage-Control Self-Centering Structures: From Laboratory Testing to On-site Applications;301
6.5.1;28.1 Introduction;301
6.5.2;28.2 The Breakthrough of Jointed Ductile Articulated Systems;301
6.5.3;28.3 Replaceable Fuses as Weakest Links of the Chain;303
6.5.4;28.4 A Further Step Forward: Controlling and Reducing the Damage to the Floor;305
6.5.5;28.5 Post-Tensioned Timber Buildings: The Pres-Lam System;306
6.5.6;28.6 From Theory to Practice: On-Site Applications and Case Studies;307
6.5.7;28.7 Conclusions;310
6.5.8;References;311
6.6;29 Seismic Design of Plane Steel Frames Using Modal Strength Reduction (Behaviour) Factors;313
6.6.1;29.1 Introduction;313
6.6.2;29.2 Review on Seismic Design Using Equivalent Modal Damping;314
6.6.2.1;29.2.1 The Equivalent Modal Damping Concept;314
6.6.2.2;29.2.2 Steel Frames, Ground Motions, Performance Levels and Highly Damped Spectra;314
6.6.2.3;29.2.3 Design Equations for Modal Damping Ratios;315
6.6.3;29.3 The Modal Strength Reduction Factor;316
6.6.4;29.4 Curves and Design Equations for Modal Strength Reduction Factors;317
6.6.5;29.5 Numerical Examples;319
6.6.6;29.6 Conclusions;321
6.6.7;References;321
6.7;30 Recent Advances in Seismic Isolation: Methods and Tools;322
6.7.1;30.1 Introduction;322
6.7.2;30.2 Uplift-Restraint Friction-Pendulum Isolator;324
6.7.3;30.3 Double Curvature Friction Pendulum (DCFP) Isolators;326
6.7.3.1;30.3.1 Smooth Hysteretic Model for DCFP Isolators;327
6.7.4;30.4 Triple Friction Pendulum Isolators;328
6.7.4.1;30.4.1 Modeling of Triple Friction Pendulum Isolators;330
6.7.5;References;332
6.8;31 Modal Analysis of Isolated Bridges with Transverse Restraints at the End Abutments;333
6.8.1;31.1 Introduction;333
6.8.2;31.2 Mechanical Idealization of Isolated Bridges;334
6.8.3;31.3 Longitudinal and Transverse Eigenvalues of a Beam with Continuously Distributed Springs;335
6.8.4;31.4 Longitudinal and Transverse Eigenvalues of a Beam with a Single Longitudinal and Transverse Spring at the Mid-Span;336
6.8.4.1;31.4.1 Transverse Periods;336
6.8.4.2;31.4.2 Longitudinal Periods;339
6.8.4.2.1;31.4.2.1 Elastomeric Bearings;339
6.8.4.2.2;31.4.2.2 Spherical-Sliding Bearings;340
6.8.5;31.5 Conclusions;341
6.8.6;References;341
6.9;32 BenefitCost Evaluation of Seismic Risk Mitigation in Existing Non-ductile Concrete Buildings;342
6.9.1;32.1 Introduction;342
6.9.2;32.2 Performance Assessment Methodology;343
6.9.3;32.3 Comparative Assessment of RC Building Archetypes;345
6.9.4;32.4 CostBenefit Assessment of Building Retrofit;347
6.9.5;32.5 Conclusions;349
6.9.6;References;349
6.10;33 Seismic Retrofit of Non-ductile Reinforced Concrete Frames Using Infill Walls as a Rocking Spine;350
6.10.1;33.1 Introduction;350
6.10.2;33.2 Analytical Model for the URM Infill Wall;351
6.10.3;33.3 Implementation into the Progressive Collapse Algorithm;352
6.10.4;33.4 Application to a Retrofit Method;354
6.10.5;33.5 Summary and Conclusions;358
6.10.6;References;358
6.11;34 Deformation Capacity of Lightly Reinforced Concrete Members Comparative Evaluation;359
6.11.1;34.1 Introduction;359
6.11.2;34.2 Deformation Mechanisms in R.C. Members;360
6.11.3;34.3 Local to Global Transformation of Stress Resultants;361
6.11.4;34.4 Strain Displacement Transformations;363
6.11.4.1;34.4.1 Strain Resultants Due to Flexural Curvature;364
6.11.4.1.1;34.4.1.1 Before Yielding of the Longitudinal Reinforcement;364
6.11.4.1.2;34.4.1.2 After Yielding of the Longitudinal Reinforcement;364
6.11.4.2;34.4.2 Strain Resultants Owing to Bar Pullout/Slip;365
6.11.4.2.1;34.4.2.1 Before Yielding of Longitudinal Reinforcement;365
6.11.4.2.2;34.4.2.2 After Yielding of Longitudinal Reinforcement;365
6.11.4.2.3;34.4.2.3 Length of Yield Penetration in the Anchorage;365
6.11.4.2.4;34.4.2.4 Limiting Strain Development Capacity After Yielding;366
6.11.4.2.5;34.4.2.5 Bond Strength in Eq. (34.10);366
6.11.4.3;34.4.3 Distortion Resultants;367
6.11.4.3.1;34.4.3.1 Elastic Distortion Term;367
6.11.4.3.2;34.4.3.2 Distortion in the Plastic Hinge Region;367
6.11.4.3.3;34.4.3.3 Degradation of Shear Strength;368
6.11.4.4;34.4.4 Bar Buckling;369
6.11.5;34.5 The Correlation with Tests;369
6.11.6;References;371
6.12;35 The Effect of Displacement History on the Performance of Concrete Columns in Flexure;372
6.12.1;35.1 Introduction;372
6.12.2;35.2 Experimental Program;373
6.12.3;35.3 Test Results: Deformation Capacities of Columns;375
6.12.4;35.4 The Effect of Displacement History on Target Displacement Demand;378
6.12.5;35.5 Conclusions;380
6.12.6;References;381
6.13;36 Innovative Seismic Retrofitting of RC Columns Using Advanced Composites;382
6.13.1;36.1 Introduction;382
6.13.2;36.2 Experimental Investigation;383
6.13.2.1;36.2.1 Test Specimens and Experimental Parameters;383
6.13.2.2;36.2.2 Strengthening Procedures, Test Setup and Materials;385
6.13.3;36.3 Results;386
6.13.4;36.4 Discussion;389
6.13.5;36.5 Conclusions;391
6.13.6;References;391
6.14;37 Optimum Partial Strengthening for Improved Seismic Performance of Old Reinforced Concrete Buildings with Open Ground Story;393
6.14.1;37.1 Introduction;393
6.14.2;37.2 Building Description, Strengthening Solutions and Earthquake Input;394
6.14.3;37.3 Nonlinear Static Pushover Analysis Results;397
6.14.4;37.4 Nonlinear, Response History Dynamic Analysis (RHDA);399
6.14.5;37.5 Concluding Remarks;401
6.14.6;References;401
7;Part IV Advanced Seismic Testing for Performance-Based Earthquake Engineering;403
7.1;38 Role and Application of Testing and Computational Techniques in Seismic Engineering;404
7.1.1;38.1 Introduction;404
7.1.2;38.2 3D Structure and Test Programme;405
7.1.2.1;38.2.1 The 3D Test Structure;405
7.1.2.2;38.2.2 Dynamic, Pseudo-Dynamic and Cyclic tests;405
7.1.3;38.3 Identification and Damage Evaluation Under Dynamic and Cyclic Loadings;407
7.1.3.1;38.3.1 Linear Identification of Structural Modal Properties;407
7.1.3.2;38.3.2 Model Updating Methodology and Damage Evaluation;407
7.1.4;38.4 Non-Linear Identification Techniques Under Pseudo-Dynamic Loadings;409
7.1.4.1;38.4.1 Structural Dynamic Characteristics from Spatial Model Identification;409
7.1.4.2;38.4.2 Structural Dynamic Characteristics Provided via a Hysteretic Model;409
7.1.4.3;38.4.3 Identification of a Hysteretic Model via a Polynomial Form;411
7.1.4.4;38.4.4 Data in a Design Format from PsD Tests;413
7.1.5;38.5 Conclusions;414
7.1.6;References;414
7.2;39 Reliability Assessment in Pseudo-Dynamic and Dynamic Tests;416
7.2.1;39.1 Introduction;416
7.2.2;39.2 General Approach for Definition and Assessment of Testing Reliability;416
7.2.3;39.3 Pseudo-Dynamic Test;420
7.2.4;39.4 Shaking-Table Test;423
7.2.5;39.5 Conclusions;425
7.2.6;References;426
7.3;40 Dynamic Interaction Between the Shaking Table and the Specimen During Seismic Tests;427
7.3.1;40.1 Introduction;427
7.3.2;40.2 Description and Validation of the Platform FE Model of the Azale Shaking Table in CEA (Saclay);428
7.3.3;40.3 The Specimens;431
7.3.4;40.4 Analyses;433
7.3.5;40.5 Conclusions;435
7.3.6;References;436
7.4;41 Frameworks for Internet Online Hybrid Test;437
7.4.1;41.1 Introduction;437
7.4.2;41.2 Host-Station Framework;437
7.4.3;41.3 Dual-Model Framework;438
7.4.4;41.4 Peer-to-Peer Framework;439
7.4.5;41.5 Test Using Host-Station Framework;441
7.4.6;41.6 Test Using Dual-Model Frame;442
7.4.7;41.7 Test Using Peer-to-Peer Framework;442
7.4.8;41.8 Conclusion;445
7.4.9;References;445
7.5;42 Large Scale Seismic Testing of Steel-Framed Structures at NCREE;447
7.5.1;42.1 Introduction;447
7.5.2;42.2 Pseudo-Dynamic Testing of 3-Storey CFT/BRB Frame;448
7.5.2.1;42.2.1 Information on the Specimen;448
7.5.2.2;42.2.2 Experimental Program;449
7.5.2.3;42.2.3 Internet-Based Simulation on Earthquake Engineering System;449
7.5.3;42.3 Substructure PDT of Two-Storey BRB Frame Subjected to Bi-Directional Earthquake Loads;450
7.5.3.1;42.3.1 Information on the Specimen;450
7.5.3.2;42.3.2 Experimental Program and Results;450
7.5.4;42.4 Cyclic tests of Four Full-Scale Two-Storey Steel Plate Shear Wall Frames;451
7.5.4.1;42.4.1 Restrainer Effects on Boundary Elements of SPSW Frames;451
7.5.4.2;42.4.2 Information on Specimen and Experimental Program;451
7.5.4.3;42.4.3 Key Experimental Observations and Results;452
7.5.5;42.5 Cyclic Tests of Three Full-Scale Two-Storey Concentrically Braced Frames;453
7.5.5.1;42.5.1 Information on the Specimen;453
7.5.5.2;42.5.2 Key Experimental and Analytical Results;453
7.5.6;42.6 Conclusions;455
7.5.7;References;455
7.6;43 Large Scale Shaking Table Tests for High-Rise Buildings: New Projects of E-Defense;457
7.6.1;43.1 Introduction;457
7.6.1.1;43.1.1 Seismic Vulnerability of Japan;457
7.6.1.2;43.1.2 Establishment and Activities of E-Defense;458
7.6.2;43.2 Tests for High-Rise Buildings;459
7.6.3;43.3 Seismic Resistance Capacity;461
7.6.4;43.4 Safety of Rooms;462
7.6.5;43.5 Summary;463
7.6.6;References;465
7.7;44 Verification Through Shaking Table Testing of EC8-Based Assessment Approaches Applied to a Building Designed for Gravity-Loads;466
7.7.1;44.1 Introduction;466
7.7.2;44.2 Description of the Structure;467
7.7.2.1;44.2.1 General Description;467
7.7.2.2;44.2.2 Problems Deriving from the Gravity Load Design;467
7.7.3;44.3 Shake Table Tests;468
7.7.3.1;44.3.1 Observed Damage;469
7.7.3.2;44.3.2 Frame-Panel Interaction;471
7.7.4;44.4 EC8-Based Assessment Approaches;472
7.7.4.1;44.4.1 Linear Model;472
7.7.4.2;44.4.2 Non-linear Model;473
7.7.4.3;44.4.3 Verifications and Numerical Results;473
7.7.5;44.5 Conclusions and Further Development;475
7.7.6;References;476
7.8;Index;478




