Faraway | Linear Models with R | Buch | 978-1-4398-8733-2 | sack.de

Buch, Englisch, 286 Seiten, Format (B × H): 159 mm x 241 mm, Gewicht: 540 g

Reihe: Chapman & Hall/CRC Texts in Statistical Science

Faraway

Linear Models with R

Buch, Englisch, 286 Seiten, Format (B × H): 159 mm x 241 mm, Gewicht: 540 g

Reihe: Chapman & Hall/CRC Texts in Statistical Science

ISBN: 978-1-4398-8733-2
Verlag: Taylor & Francis Inc


A Hands-On Way to Learning Data Analysis

Part of the core of statistics, linear models are used to make predictions and explain the relationship between the response and the predictors. Understanding linear models is crucial to a broader competence in the practice of statistics. Linear Models with R, Second Edition explains how to use linear models in physical science, engineering, social science, and business applications. The book incorporates several improvements that reflect how the world of R has greatly expanded since the publication of the first edition.

New to the Second Edition

- Reorganized material on interpreting linear models, which distinguishes the main applications of prediction and explanation and introduces elementary notions of causality

- Additional topics, including QR decomposition, splines, additive models, Lasso, multiple imputation, and false discovery rates

- Extensive use of the ggplot2 graphics package in addition to base graphics

Like its widely praised, best-selling predecessor, this edition combines statistics and R to seamlessly give a coherent exposition of the practice of linear modeling. The text offers up-to-date insight on essential data analysis topics, from estimation, inference, and prediction to missing data, factorial models, and block designs. Numerous examples illustrate how to apply the different methods using R.
Faraway Linear Models with R jetzt bestellen!

Zielgruppe


Undergraduate Advanced


Autoren/Hrsg.


Weitere Infos & Material


Introduction. Estimation. Inference. Prediction. Explanation. Diagnostics. Problems with the Predictors. Problems with the Error. Transformation. Model Selection. Shrinkage Methods. Insurance Redlining—A Complete Example. Missing Data. Categorical Predictors. One Factor Models. Models with Several Factors. Experiments with Blocks. Appendix: About R. Bibliography. Index.


Julian J. Faraway


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.